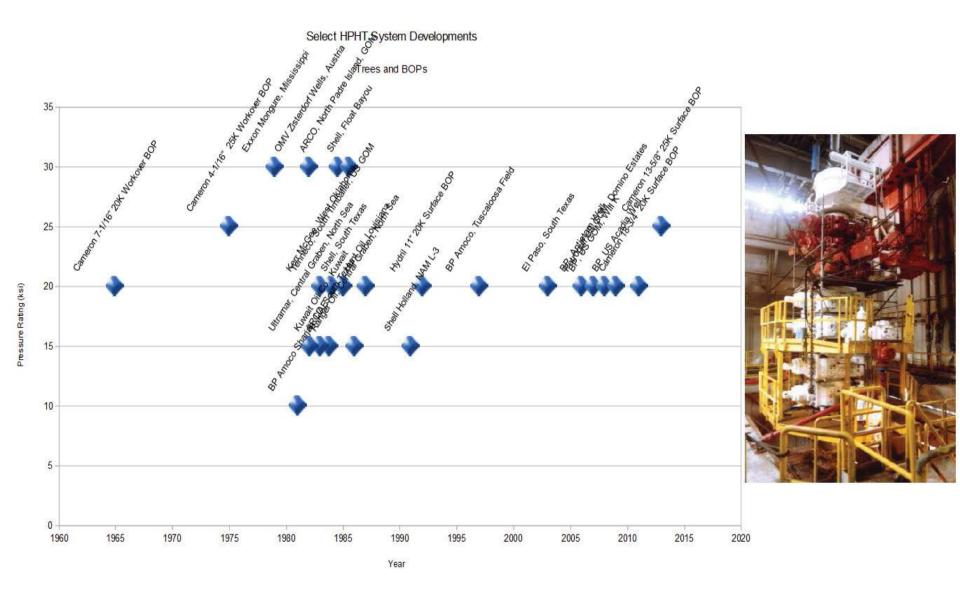
BSEE Standards Workshop

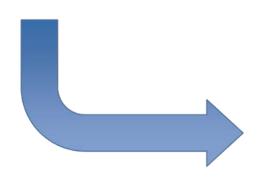
API 17TR8: High-Pressure High-Temperature (HPHT) Design Guidelines

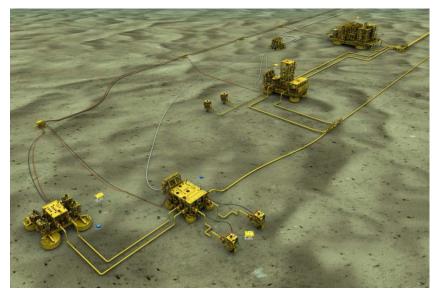

May 8, 2015 Houston, Texas

Man Pham, BP Co-Chair: API 17TR8

HPHT Design Guidelines

- 1. Evolution of HPHT
- 2. Previous HPHT Efforts
- 3. Present HPHT
- 4. Key Elements of API SC17 Technical Report 8 (17TR8)
- 5. API 17TR8 Phase 2
- 6. Standardization Efforts
- 7. ASME Collaboration

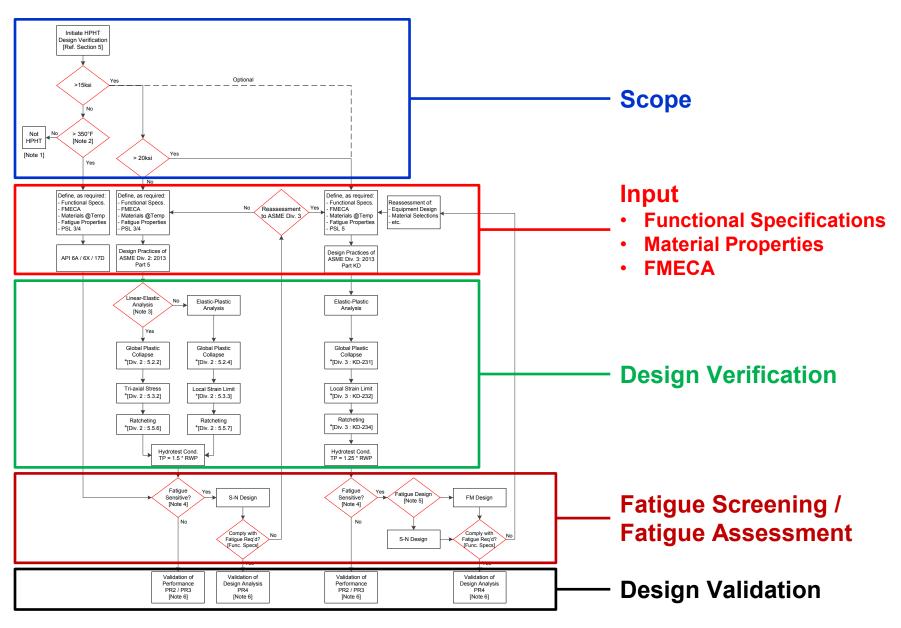

Evolution of HPHT



Previous HPHT

API 1PER15K-1: Protocol for Verification and Validation of High-pressure High-temperature Equipment

- Holistic approach in identifying wellbore issues and challenges associated with HPHT (> 15 ksi RWP):
 - 18-3/4" 20K surface stack
 - 13-5/8" 25K surface stack
 - 20K wellheads


API 17TR8: High-pressure High-temperature (HPHT) Design Guidelines

- API 1PER15K-1 HPHT considerations are <u>assembled</u> into design flow chart – a "roadmap"
- Provides a <u>design guideline</u> <u>solution</u>

Present HPHT

- API 17TR8: High-Pressure High-Temperature (HPHT) Design Guidelines
 - Commenced: 2012
 - Published: February 2015
 - Industry Participations:
 - Oil & Gas: Operators, Manufacturers, Service Companies, Consultants
 - Industry Societies:
 - ASME American Society of Mechanical Engineers
 - NACE National Association of Corrosion Engineers
 - Regulatory Agency: DOI/BSEE: Active engagement

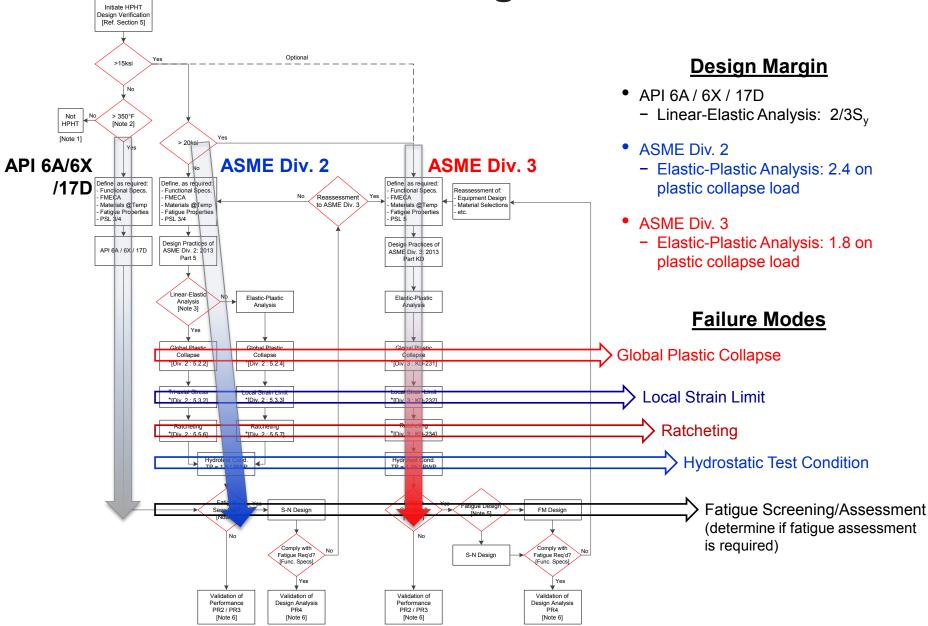
API 17TR8 : HPHT Design Flow Chart

API 17TR8 : Input

- Equipment Functional Specifications:
 - Design pressure (internal and external) & temperature
 - Production fluid chemistry and gas content:
 - H_2S , CO_2 , etc.
 - Cyclic loading conditions
 - Pressure, temperature, external loads, etc.
 - Mechanical / Structural loads (external loads)
 - Drilling operation, workover operation, etc.
 - Corrosion, Corrosion/Erosion
 - Industry standards and regulatory requirements

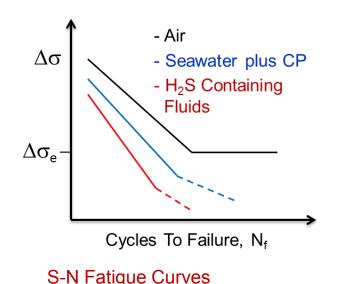
API 17TR8 : Input

- Material properties for HPHT application:
 - Established list of mechanical and physical properties needed by equipment designers
 - Properties at various temperatures for environment / operating conditions
- Consideration to operating / environmental conditions, as applicable:
 - Produced Fluids (oil, gas)
 - H_2S , CO_2 , etc.
 - Seawater + Cathodic Protection (CP)
 - Completion Fluids, Drilling Fluids
 - Chloride Corrosion, Hydrogen Embrittlement

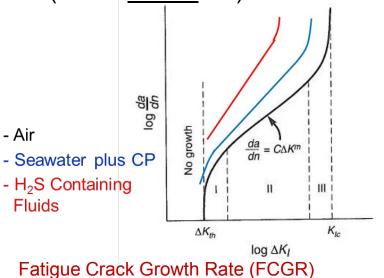

API 17TR8 : Input

- Failure Modes, Effects and Criticality Analysis (FMECA)
 - Identify applicable failure modes for design verification
 - Identify design validation testing requirements through FMECA: Equipment or Project-Specific
 - PR 3 / PR 4
 - API 17N provides guidance on FMECA procedures
 - API 17N: Recommended Practice for Subsea Production System Reliability and Technical Risk Management

API 17TR8 : Design Verification


- Design verification for protection against identified failure modes, for all design paths:
 - Global plastic collapse
 - Local strain limits
 - Ratcheting effects
 - Plastic collapse under hydrostatic test condition
 - Fatigue screening / Fatigue assessment
- Application of design codes:
 - API 6A / 6X / 17D (ASME BPVC Section VIII, Div. 2: 2004)
 - ASME BPVC Section VIII, Div. 2: 2013 Edition
 - ASME BPVC Section VIII, Div. 3: 2013 Edition

API 17TR8 : Design Verification



API 17TR8 : Fatigue Assessment

- Fatigue Screening: To determine if equipment is fatigue sensitive or fatigue assessment is required
 - Experience with similar equipment operating under similar conditions can be basis for fatigue screening (ASME Div. 2 Para 5.2.2)
- Environmental effects can have adverse impacts on fatigue properties
 - S-N Fatigue Curves

Fatigue Crack Growth Rate (da/dN versus ∆K)

API 17TR8 : Design Validation

- PR: Performance Requirements
 - Extension on existing PR of API 6A/17D
 - Identify validation testing for designs and products
 - PR3: Performance-based
 - PR2 + additional identified from equipment-FMECA, e.g.:
 - Elevated operating temperature
 - Additional thermal cycles, endurance cycling
 - PR4: Design Analysis Validation
 - PR3 + additional identified from project-FMECA, e.g.:
 - Strain-gauging program and comparison to FEA results
 - Fatigue testing in accordance with recognized standards

API 17TR8 : Phase 2

- No Change to published 1st Edition: scope, design methodologies, materials requirements
- **Refinement** in the areas of:
 - Quantify the effects of hydrostatic pressure test through industry research studies
 - Standardization of material characterization testing procedures
 - Standardization of input parameters for fatigue assessment regional
 - Definitions and allowable stresses for "Extreme" / "Survival" conditions

Hydrostatic Pressure Test

- Quantify the effects of hydrostatic pressure tests through research studies
 - Pressure Rating < 20ksi (existing APIs or ASME Div. 2 path)
 - Hydrostatic Test Pressure = **1.5 x API RWP**
 - Pressure Rating > 20ksi (ASME Div. 3 path)
 - Hydrostatic Test Pressure = **1.25 x API RWP**
 - No adjustment in test pressure for yield strength at test temperature <u>versus</u> design temperature
 - High test pressure may result in excessive yielding/permanent strain damage that can affect component's functionality, sealing, fatigue life estimation, etc.

Standardization Efforts Material Characterization Procedures

- Objectives:
 - Standardization of material characterization and testing procedures
- Equipment designer identifies required properties through material selection and qualification processes
- Parameters:
 - Fatigue S/N Curves
 - Fatigue Crack Growth Rate, FCGR
 - Fracture Toughness, in environment, K_{IEAC}
 - Strain Limit Damage

Standardization Efforts Input Parameters for Fatigue Assessment

- Objectives:
 - Identify and standardize input parameters for fatigue assessment – regional
- Input Parameters:
 - Static loads: Pressure/Temp
 - External loads
 - Material Characterizations:
 - Fluids: Drilling, Completion
 - Environmental effects: H₂S, CO₂, seawater, CP, etc.

- Water depth range
- Metocean conditions
- Soil model/data (P-y)
- Rig type
- Operations:
 - Drilling
 - Production

ASME Collaboration

- Initiate collaboration efforts at ASME Pressure Vessel and Piping (PVP) Conference – July 2014
 - Engagement with ASME community, raising awareness of API's development of API 17TR8 with application of ASME Div. 2 and ASME Div. 3
 - Identification of API & ASME collaborative efforts on relevant subsea topics
- ASME Task Group for Subsea Applications (SG-HPV)
 - 1st Meeting January 28, 2015
 - ASME and API participants
- Ongoing Collaboration Efforts

Thank You