
Subsea Well Intervention Systems Working Draft 6 API Working Draft 6 API Standard17G

Introduction

- API RP 17G 1st edition: released 1995 for Completion/workover risers
- API RP 17G 2nd edition: 2006/ISO 13628-7 released 2005
 - Introduced the limit state design approach
 - Major updates on design requirements for pipe, connectors, material and connector qualification
 - Advanced riser design and connector qualification in the industry
- API 17G 3rd edition: (Working Draft 6)
 - Transition from RP to Standard. (Major Revision)- Advances design process for WCP, SSTT & forms the basis for emerging well intervention systems
 - Winter 2015 Committee 17 meeting voted to move from a Spec to a Standard and allow industry to apply new guidance.
 - Self contained document, ensuring system and component life cycle integrity
 - Includes: (currently 15ksi, 350 deg F)
 - Well Control Package,/ Subsea Test Trees
 - Landing String / Open Water High Pressure Riser
 - Intervention Work Over Control System

Update May 2015

- Working Draft 6 sent to API April 22 for distribution to committee 17
- Requesting comments for the following sections:
 - Materials,
 - Connector qualification,
 - Controls
- Editorial team continuing to review the above sections line by line

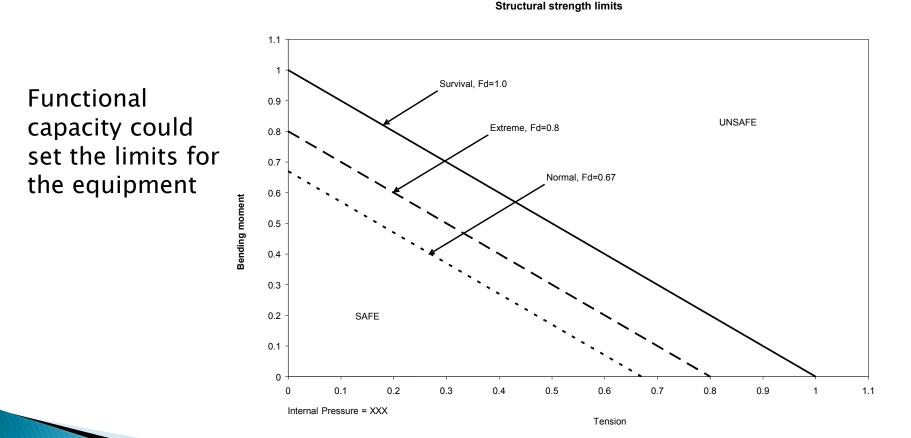
API Standard 17G ENHANCEMENTS

Safety Strategy

 Aligns the Operational Program requirements with the Design / Performance of the Equipment

Material Integrity

 Is specified to ensure the manufacturing process, quality control & fabrication and assembly provide a ductile material which prevents brittle fracture


Design Process

- Design by analysis and validated by test
 - Static / Structural
 - Cyclic Fatigue (SN or Fracture Mechanics methods)
 - Functional Testing to validate analysis results and validate design which can't be determined by analysis
- **Qualification** (Validate by testing)
 - Annex K, L, ie.. Endurance limits, validate shear & seal requirements
 - Annex I ie... process for scaling, understanding events causing loss of preload
- **Testing Methods** (Verification of equipment and crew)
 - FAT/ EFAT & SIT

• Crew drills

API Standard 17G ENHANCEMENTS

Std. 17G Analysis process provides component Capacity information which will aid the engineer

API Standard17G METALURGY & DESIGN

- Material properties, NDT, QC requirements compatible with the static and cyclic design methodologies
 - Rationalization of Material requirements for design method should be consistent and limit use of different material requirements and code
- Material section in Std. 17G requires Qualification of the Manufacturer

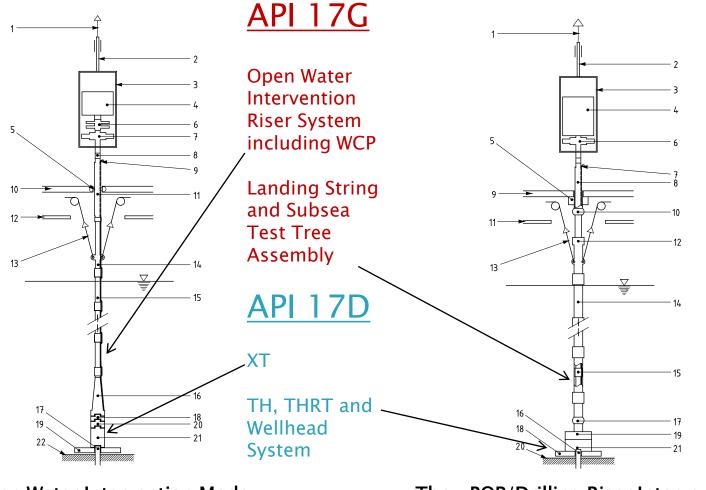
- Std. 17G does not require analysis of low cycle Pressure and Temperature (Considering requirement for equipment above 15ksi)
- ASME process is Analysis based, TR8 process may not identify functional limitations of equipment
 - Additional guidance requirements for PR4 testing should be considered

API Standard17G Connector Qualification

- Various connectors within Equipment range
- Need industry review and comments to refine
- Qualification testing is required to ensure that functional limits are understood
- Rationalize large bore high capacity hydraulic connector testing

API Standard17G Controls

- Varied system requirements
 - Safety system requirements vary
 - Deeper and higher pressure require
 - Bench testing of controls to validate analysis
 - Request industry review


Comparison of codes

	API 17D	API STD 17G	ASME VIII 2	ASME VIII 3
Pressure limit	15K	15K	5K and above	Promoted for 10k and above
Analysis	Linear Elastic FEA	Elastic and elastic plastic	Elastic or EP + Str Hrd	EP + Str Hrd
Charpy V ¹⁾	20 J	50J avg/ 38J sgl	38J (2 in)	41 J ³
Test specimens	QTC or Prolongation	Correlated QTC or Prolongation	Prolongation	Prolongation
Yield de-rating	120°C	50°C	40°C	40°C
Accidental load	No	Yes	Yes	Yes
Cyclic load	No/Yes ²	Yes	Yes	Yes
Surface NDE	3/16"	No relevant linear	3/16"	1/16"
acceptance	(5 mm)	indication, > 1,6 mm & .8mm for fatigue hot spots	(5 mm)	(1,6 mm)
1) 75 ksi steel, 2 in thick EP = Elastic-Plastic FEA				

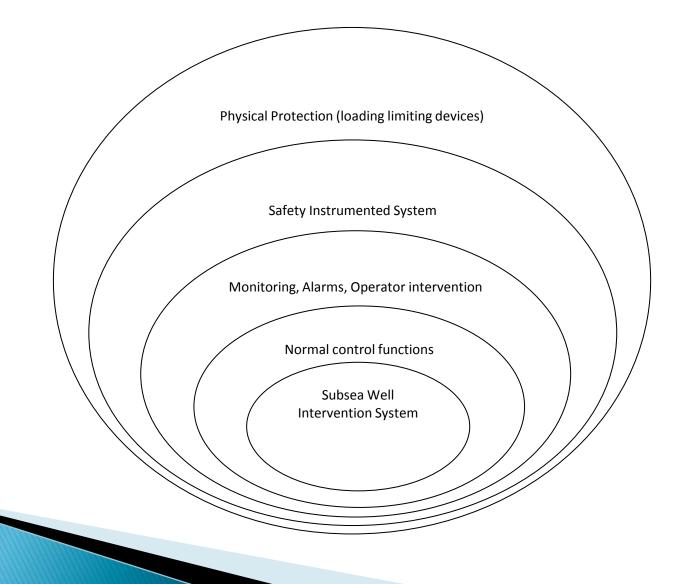
2) 17D-mentions "fatigue considerations" but does not specify requirements and refers to 17G

3) Figure KM-234.2

Code Split between API 17G and API 17D

Open Water Intervention Mode

Thru–BOP/Drilling Riser Intervention Mode


Summary

- Design method consistent to dovetail with TR8:
 - The static design method gives consistent safety margin against failure
 - Provides consistent results for complex geometries and loads
 - The use of elastic-plastic method provides knowledge of strain in components
- Fatigue failure criteria dovetails with TR8 (below WCP, SSTT where primary barrier resides) so:
 - S-N curves applicable for environmental cyclic loads (>10,000 cycles per day)
 - Use of calibrated fatigue design factors for offshore applications (i.e. *high fatigue design factor to limit potential crack size*)
 - Inspectable components (i.e. temporary equipment)

API Standard 17G

QUESTIONS?

API Standard 17G Safety Design Strategy

