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 Abbreviations and Nomenclature 

API  American Petroleum Institute 

BOP Blow Out Preventer 

BSEE Bureau of Safety and Environmental Enforcement 

CFD Computational Fluid Dynamics 

COP ConocoPhillips 

FEA Finite Element Analysis 

GOM Gulf of Mexico 

HSE Health, Safety and Environment 

HPHT High Temperature High Pressure 

OCS Outer Continental Shelf 

UH University of Houston 

WWC Wild Well Control, Inc.  

LT Lower Tertiary 

UTA University of Texas at Austin 

SCP Sustained Casing Pressure 

MD Measured Depth 

TVD True Vertical Depth 

k Thermal conductivity 
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1 EXECUTIVE SUMMARY 

Historically, the concern of thermal stresses induced in a well by completion and production operations was not 

considered early in the developing petroleum industry.  Wells were completed and assumed to remain functional 

and intact for the producing lifetime.  As well integrity problems appeared, they were fixed, but a holistic 

evaluation of thermal stresses induced on a well by completion, production, and intervention operations was not 

routinely considered.  Considering the comparatively low thermal and mechanical gradients imposed on early 

wells, this is not surprising.  In the second half of last century, well depths increased along with temperatures 

and pressures.  Along with this development, awareness of safety hazards and desire to establish best practices, 

guidelines and regulations governing well construction and operation was emerging. 

The advent of geothermal wells, HPHT wells and thermal stimulation of viscous hydrocarbons greatly increased 

awareness of thermal induced hazards.  Instances of casing buckling or wellheads growing out of the ground 

emphasized the potential of thermal effects.  Additionally, conventional wells were drilled deeper, hydraulic 

fracturing treatments were larger in volume, and workover operations became more frequent.  All these factors 

increased the effect of temperature changes in the well.  

It is proposed that the occurrence of a thermal shock may be defined as a magnitude of temperature change over 

the time at which it changes.  Therefore thermal shock may or may not occur depending on various conditions 

in the wellbore.  

The intent of this project is to investigate whether or not thermal shock has been adequately considered in the 

design and operation of OCS wells and to establish whether or not whether there are any gaps in knowledge. 

This final report covers the completion of the Thermal Shock Technology E16PC00010. The summary of 

findings is shown below. 

1.1 Overall Project Summary: 

The summary of findings of the overall project goals and objectives are summarized with the initial objective 

to investigate whether or not thermal shock has been adequately considered in the design and operation of OCS 

wells and to establish whether or not whether there are any gaps in knowledge: 

1 Identify source and magnitudes of thermal gradients produced during OCS well drilling, 

completion and production. 

 Stimulating a well results in significantly higher thermal gradients in the well than drilling, 

completion and production. Stimulation also causes more damage to the cement than a normal 

production/shut-in cycle and that damage can extend a significant distance up the well bore.  
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2 Develop an acceptable definition of thermal shock and identify operating conditions that could 

result in a thermal shock. 

 Wells with a bottom hole temperature of 350°F or above combined with a minimum ambient 

temperature as low as 40°F. 

 Thermal shock could be initiated by shutting in a producing well and allowing it to cool to ambient 

or by stimulating a well. The thermal shocks are more severe during stimulation and damage is mainly 

caused by the cyclical nature of the load. 

 Thermal shock depends primarily on the temperature range of that shock but also the rate at which 

temperature changes. The rate of cooling of the well depend on the operations considered, e.g. natural 

cooling post shut-in or cooling during well stimulation for example. 

3 Evaluate thermal shock damage potential to well bore components and barriers. 

 Thermal shock can potentially cause damage to various well bore components. The consideration of 

thermal effects is much better understood with regards to tubulars and is typically accounted for in 

well design software such as WellCAT and StressCheck. These are programs that are used for the 

design of the casing and tubing used within a well. The damage potential to settable barriers such as 

cement carries a greater uncertainty due to the inherent material characteristics of cement. The 

severity of this damage to cement is highly dependent on factors such as cement composition used, 

quality of the cement itself and placement of cement. It should be noted that damage does not 

necessarily result in an actual loss of barrier/zonal isolation  

4 Assess applicability of previously-reported computer simulation or failure analyses to address 

thermal shock risks. 

 The reports recognizes that well design software WellCAT is widely used within the industry in the 

design of the components of a wellbore. It is noted that WellCAT is well suited for the determining 

the thermal loads on the various components as this is one of its main functions. WellCAT and its 

module StressCheck are very applicable to designing the tubulars for thermal shock.  However, these 

programs assume competent cement sheaths are in place.  It would be prudent to examine the 

sensitivity of the tubular design to cement barrier breakdown over the course of the well life and 

revisit the cement design if the results of that sensitivity analysis warrant it. 

5 Identify ways to mitigate thermal shock effects and ways to avoid the creation of a thermal shock 

environment. 

 While thermal shock environments may not be completely unavoidable due to the inherent nature of 

oil and gas wells, proper design of tubulars and the tubular connections in accordance to current 

industry recommended practices will help mitigate against thermal shock. The cement composition, 
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uniformity of cement mixing and quality of placement of cement is crucial to mitigate the thermal 

shock effects.  The potential for thermal shock damage to cement should be examined across the 

entire well bore. 

6 Evaluate thermal shock resistance of various well barriers utilized in the industry, both mechanical 

and settable fluid. 

 Tubulars, when thermal loading is accounted for in the design have very good thermal shock 

resistance when considering typically used steel grades, etc. In addition there are established 

guidelines for de-rating steel for various temperature exposures. It was found that the cements used 

in OCS wells have a range of resistances; some cements performed poorly against thermal shock 

while some performed very well.  Thermal shock resistance is needed throughout the cement barrier 

system and isn’t just an issue at bottom of the well. 

7 “Identify gaps in current well design methods contributing to loss of well integrity caused by thermal 

shock.” 

 The findings of this project show that the industry has made good strides in ensuring that technology 

used in the past for shallower Outer Continental Shelf (OCS) wells is suitable for these deeper and 

hotter wells that will experience thermal shock. However a better understanding of the conditions 

faced in the deeper and hotter wells and the need to increase the performance of the cement barriers 

throughout the well is a knowledge gap that exists. 
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2 INTRODUCTION AND PROJECT OBJECTIVES 

The background to this project was a request by BSEE for research into the effects of thermal shock on oil wells, 

specifically in the outer continental shelf (OCS). In its broad agency announcement, [1], BSEE posed a potential 

problem that required further research as follows:  

“If a High Temperature well (greater than 350° F) is shut in, the well may go into thermal shock when the 

temperature of the well drops to equilibrium.” 

In an OCS deep water well, equilibrium could be as low as 35° F (i.e. sea water temperature at the sea bed).  

The temperature of the well fluids could be as high as 350° F. Therefore large temperature gradients and 

temperature changes can exist during the operation of a well.  The magnitude of temperature changes during 

well operations as well as the rate of change of temperature could be considered a thermal shock.  

The aim of this project was to explore whether shut in and other operations could lead to a thermal shock event 

in an oil and gas well, research the circumstances under which a such events could occur and most importantly 

quantify whether thermal shock could damage the well barrier systems in place.  Well barriers are the means by 

which the pressurised fluids in the reservoir are controlled to prevent the unintended release of reservoir fluids 

into the environment. 

Figure 1 illustrates a Deepwater HPHT well showing various temperature gradients experienced throughout the 

life of a well.   
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Figure 1   Deepwater well gradients  

The geothermal gradient (orange) traces the temperature under static conditions from the surface at 80°F, to the 

subsea mudline surface at 39°F, to the bottom of the well at 350°F or greater.  The production gradient (blue) 

traces the temperature during production from the bottom of the well at 350°F to the mudline at 321°F, to the 

surface at 72°F.  The stimulation gradient (red) simulates a stimulation operation showing a temperature change 

from surface at 80°F, mudline at 65°F, bottom of the well at 127°F, followed by perforation at 350°F.  These 

three gradients, while illustrative only, are demonstrations of the various temperature profiles potentially 

experienced in all wells.  This illustration also shows the potential temperature changes that can occur along the 

entire well bore during different well operations.  The rate of temperature change was also thought to be an 

important in consideration in a thermal shock.   

A single definition of thermal shock has not yet been widely adopted across the oil and gas industry.  A thermal 

shock definition must therefore be better defined.  Working with the project team and BSEE that definition and 

quantification was developed within this project.  
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3 FORMATION OF INDUSTRY ADVISORY GROUP 

Several major operators with wells in the Gulf of Mexico were contacted to be members of the industry advisory 

group (IAG).  As expected, there was mixed response for IAG membership, as a significant amount of time and 

effort is required on a voluntary basis. 

The focus for this task was attracting interest from major operators.  While it may be beneficial to also gain 

input from drilling contractors and equipment vendors, it was considered a better strategy to wait until the project 

had developed specific questions. This approach to seek advice was used rather than adopting a blanket invite 

approach.   

Some operators had indicated a willingness to participate in the project but expressed concern over some of the 

terminology used in the project description with ‘thermal shock’ in particular causing some concern, particularly 

in the context of shut-in.  Some operators do not consider a shut-in as an event that will provide a significant 

thermal shock. 

The following operators were willing to participate in the project: 

 ConocoPhillips 

 Chevron 

 Apache 

The following shows companies and their respective personnel that represented the IAG for the project.   
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Project Industry Advisory Group 

Name Company Job Title 

Gary Limb ConocoPhillips Principal Engineer, Well Integrity 

Robert Martin Chevron Cementing Specialist 

Steven Riedinger Chevron Cementing Specialist 

Steve Willson Apache Senior staff Technical Advisor – geomechanics and 

pore pressure 

Joe Savoy Wild Well Control Well Operations Manager, Marine 

   

Alistair Gill Wild Well Control VP Advanced Engineering 

Larry Watters CSI Technology Chief Engineer 

Nathan Pinkston Wild Well Control Senior Engineer 

   

Richard A. Schultz University of Texas at 

Austin 

Senior Research Scientist  
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3.1 Industry Advisory Group - Feedback 

Feedback on the literature review of current guidelines and proposed thermal shock load histograms respectively 

was received from Chevron and ConocoPhillips (COP) and was considered in the project: 

ConocoPhillips: 

 The definition of thermal shock was queried by ConocoPhillips; maximum and minimum temperatures at 

depth are common well design parameters, however rate of change of temperature is not.  COP suggested 

clarifying the definition of thermal shock being used for the project and to provide some plausible examples 

of how “thermal shock” can be detrimental to the well.  

Chevron: 

 Chevron suggested that some of the failure modes such as radial cracking from tensile failure, shear failure, 

de-bonding, etc. are defined.  Also, suggested emphasizing that failure of the cement does not necessarily 

result in loss of isolation. 

 Chevron queried the bottom hole temperature for Lower Tertiary operations in Deepwater suggesting 350°F 

was on the high side for static temperature, with 250°F being more typical with some starting to approach 

300°F.  Also reaching 350°F at 25,000 ft as the initial well schematic depicts would be a very high 

temperature gradient to achieve for Deepwater. 

- WWC increased the true vertical depth (TVD) of the wells to reflect Chevron’s input. 

 Chevron also suggested that surface pipes be cemented to mudline, as per CFR 250.421 

- Since this well is based very closely on an OCS well completed in the GOM it was decided to have only 

the cement in the 36x28 annulus cemented to mudline. 

 Chevron questioned how the FEA model is managing the mud left behind pipe above the top of cement.   

- This was addressed within Section 6 Well Barrier Design and Response.  

 Chevron also suggested conditioning the hole for days seemed long and would have expected this period to 

be measured in hours but accepted that things vary from operator to operator. 

- The times listed were initial estimates and the sensitivity to this was addressed in the FEA. 

 The initial temperature profiles provided to the IAG were just the starting position.  The speed at which 

temperature changes occur was explored in the FEA, however it was found that analysis convergence issues 

limited the rates of change that could be achieved in certain cases. 

 Chevron also questioned the well schematics showing each string cemented back into the previous string 

and pointed out that this is not very common. To assist in alleviating annular pressure build up, those annuli 

are typically left open on purpose to act as a relief point. 

- Feedback was be taken into account in future well configurations 
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 Chevron also questioned the choice of 5 ½” and also suggested that the use of vacuum insulated tubing be 

considered in the project as it is often utilized to reduce annulus temperatures to reduce annular pressure 

build-up. 

- This can be taken into consideration for future well configurations, the original 5 ½” tubing was used 

since it is based on an actual design.  
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4 LITERATURE REVIEW 

The task definition used for this report is complex and is attached as Appendix B, this differed slightly from the 

task definition originally supplied at time of tender.  The key items adjusted were the definition of thermal shock 

being used in the review, the initial well configuration and the materials used to drive the literature search.  

The intent of this task was to ensure that the objectives of this project had not been met by other published 

research and to determine whether previously published work would be of use to the current project.  

4.1 Literature Review Of Thermal Shock Of Well Barriers 

Document searches were primarily conducted online in using various key word combinations generated from 

the task definition. 

This flagged tens of thousands of possible technical paper titles from sources including: 

 Society of Petroleum Engineers 

 Offshore Technology Conference 

 American Petroleum Institute  

 American Rock Mechanics Association 

 International Petroleum Tech Conference 

 International Society for Offshore and Polar Engineering 

 International Society for Rock Mechanics 

 Petroleum Society of Canada 

In order to sort through such a large number of titles the searches were restricted, when possible, to peer 

reviewed papers only.  This restriction enabled a list of a few hundred papers to be generated that meriting 

further review. 

It was clear from the literature that thermal shock in the context of wells in general has been examined by others. 

But the literature review also suggests that thermal shock, as defined in Appendix B and as it effects the entire 

well barrier system, has not been thoroughly investigated for OCS wells and the further research within this 

project is justified. 

The literature review identified a number of key areas of research and sources of relevant information that will 

be given further discussion, namely: 

 Researched published literature on thermal stimulation to enhance rock fracturing. [3 et al].  
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 Research into the effects of injecting cold fluid into cased or uncased holes, [4 et al]. Similar research 

work that was identified during the previous BSEE project, [7], “Well Stimulation Effects on Annular 

Seal of Production Casing in OCS Oil and Gas Operations” also appeared during this review. 

 There are many technical papers relating to thermal shock in the context of geothermal and steam 

assisted gravity drainage (SAGD) wells that have been published by multiple authors, [4 and 6 et al].  

 Thermal effects on well tubular design is well recognized in literature, [12, 13 et al] 

 Guidelines already exist for design and construction of well heads and wells in general for HPHT 

condition, [18, 19 and 20] 

4.1.1 Thermal Shock Due To Cold Fluid Injection 

Since the increased usage of unconventional oil extraction methods, such as fracking, multiple authors have 

investigated the effects of injecting cold fluid into the well bore, [3, 4, 7and 11].  This is clearly relevant to this 

project as well stimulation will be part of the load history for the OCS wells. However, the literature review 

suggests that most if not all of the work of this type is focused on the open hole or last cased hole section of the 

well, where the temperature difference are typically the greatest (perhaps understandably). 

Objectives 1 through 5 of this project were to examine thermal shock more widely both in terms of location 

within the well and the circumstances where a thermal shock can occur and do damage to the barrier systems 

within the well, particularly the cement. There appears to be little attention paid to the upper sections of the well 

during stimulation, presumably because the assumption has always been that lower temperature deltas result in 

less damage.  Therefore it is reasonable to state that the project objectives have not been met elsewhere. 

4.1.2 Thermal Wells and SAGD - Lessons to be Learned 

The temperatures involved in Thermal wells may exceed those likely to be encountered in OCS wells, even 

those with HPHT, nevertheless it was felt prudent to review this arena to confirm whether or not relevant 

information or lessons learned could be applied to the current project.  

The review found a number of papers that looked at the well in its entirety including the interaction of all the 

constituent parts, [5 is typical].  This was generally contrary to what had been found in literature relating to OCS 

wells where individual parts have been considered by many but the well as a system less so. It should be pointed 

out that many of these wells, particularly of the SAGD type are typically much shallower and their construction 

differs from typical OCS wells in a number of ways, e.g. fewer casings.  Nevertheless, lessons were learned 

from this work to apply to the current project, particularly in terms of the possible merits of adopting a more 

holistic approach to numerically modelling the well. 
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4.1.3 Thermal Shock on Well Components and Barriers 

Design of well tubulars is well documented throughout literature and the importance of thermal effects is also 

clearly recognised and design guidelines exist for well tubulars and other well components all acknowledging 

the importance of temperature and temperature cycling in the loads to be considered in the design, [18,19 and 

20].  There does not appear to be much if any literature concerning the specific effects of thermal shock on a 

well bore as a whole.  As per Section 4.1.1, the focus seems to have been on the bottom hole section.  Based on 

the limited returns during the literature search from the key phase “thermal shock” there does not appear to be 

a consensus within the oil and gas industry over what that term means and therefore objective 2 remains to be 

satisfied within this project.  

4.1.4 Thermal Shock due to Shut-in 

Note that also within the objectives for this project is the need to examine the temperature changes caused by 

shutting in a well and what damage they may do to the barrier systems.  Literature review has uncovered very 

little work specific to shutting in a well and any negative consequences that may have.  API recommended 

practice identifies that in an HPHT context shut-in temperature effects may be relevant, [19], and identifies a 

survival load condition post shut-in when cooling of the tubulars at the top of the well may increase tension 

while shut-in pressures are still acting.   This is the closest description to what BSEE outlined in its BAA found 

in regulatory related documents.  This is also supported by work done by a joint industry project (JIP) for the 

Minerals Management Service in 2001, [16]. 

Otherwise, literature review has not uncovered any particular concerns over shut-in.  In fact most of the papers 

reviewed did not identify shut-in as a design driver, at least for well tubulars, [13 is typical].  This supports one 

operators view that shut-in does not result in a thermal shock. 

Other literature examines the temperature effects of shut-in on well bore and annular fluids but doesn’t describe 

a thermal shock. 

It is clear from the design guidelines that are available that the cold shut-in condition may be important to certain 

barriers, tubing in particular, and merits further investigation.  

4.2 Literature Review Of Computer Models Investigating Thermal Shock 

The purpose of this subtask is to review the capabilities of the simulation tools proposed, identify any gaps and 

make recommendations on how to fill those gaps.  
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Research was done to explore the capabilities of commercially available software that is specifically used for 

the design and planning of oil and gas wells.  

After reviewing various commercially available software packages it was identified that very few offer a 

combined capability that can accommodate the entire wellbore system throughout all phases of its life cycle. It 

was determined that of the software’s reviewed WellCAT, [22], is best suited to handle the tasks involved in 

modelling the wellbore architecture relevant to this project. A potential gap identified was the modelling of the 

cement with regards to a stress analysis of the cement interaction with the casings. The only material properties 

used as inputs for cement are density, specific heat and conductivity. It assumes that axial loads in cemented 

casing sections result in no axial displacement. This assumption is reasonable for casing analysis, but the cement 

in the annulus needs to be analysed as part of the system to determine if there is any damage to the cement or 

potential for de-bonding/micro-annuli development in the cement. 

Therefore a combination of WellCAT and ABAQUS, [23], were used to model the wellbores. This will allow 

for the use of the capabilities of WellCAT such as the load sequencing, thermal profile development for inputs 

in ABAQUS. The use of ABAQUS will allow for more detail modelling and analysis of the cement and failure 

of the cement. The modelling techniques used in ABAQUS in the FEA was an extension of the FEA performed 

in “Well Stimulation Effects on Annular Seal of Production Casing in OCS Oil and Gas Operations” 

(BSEE#728) and was validated by physical testing. 

The literature review of this software included the following: 

4.2.1 Drill Bench – Schlumberger 

Drill Bench, [25], is software that is used for understanding the hydraulics during all phases of the drilling 

operations. Its core function is built around the well-control workflow, covering pressure control, well control 

and blowout control. The functions of this software would not be considered directly applicable to the type of 

modelling that is required for this project since it is not a tool typically used for the casing design of a well. 

4.2.2 EDrilling - EDrilling AS 

EDrilling, [25], has various modules of software available that are used for planning to deliver a “Life Cycle 

Drilling Simulation with advanced dynamic drilling models and diagnosis technology. It is similar to Drill 

Bench as it is primarily focused on the hydraulics during drilling and also production.  The functions of this 

software would not be considered directly applicable to the type of modelling that is required for this project 

since it is not a tool typically used for the casing design of a well. 



 

 

  

Title: Final Report 

Client: BSEE 

Project: Thermal Shock Technology / E16PC00010 
 

 

 

  

 Document ID Document Owner Page Template ID / Revision No. 

TM-PM-17  Alistair Gill Page 18 of 127 TM-PM-17 (01) 

 

4.2.3 TubeFlowPIC – BTechSoft 

TubeFlowPIC, [26], is software that is designed for wellbore intervention, drilling and completions. It has the 

capability to model complex well configurations with its database of standard pipe sizes for configuring well 

tubulars, capillary strings, coiled tubing and drill strings. It has the capability to calculate the transient 

temperature history of a well, but it currently does not have this information available as an output. The company 

is currently modifying the software to add this output, but it will not be available in time for use in this project. 

At this time the availability is not known. 

4.2.4 WellCAT – Landmark Solutions 

WellCAT, [22], is software that is intended to design and model the entire wellbore. It has the capability to 

handle most, if not all loading situations that a well might experience throughout its life cycle. This includes 

drilling loads, cementing loads, production loads and external loads applied to the well head such as loadings 

on the blowout preventer (BOP). It has the capability to analyse tubing/casing loads and movement, buckling 

behavior, design integrity and can simulate fluid flow and heat transfer to allow for full transient analysis. It 

also has the capability to model various tubing hangers, packers, connections.  

WellCAT is widely used throughout the industry to design wells both onshore and offshore and is used in HPHT 

well design. WellCAT software is suited for the tasks of this project due to its vast capabilities and is used by 

many operators. 

4.2.5 ABAQUS –Dassault Systemes  

The general purpose FEA software ABAQUS, [23], will be used in combination with WellCAT to fill in any 

gaps. ABAQUS is well suited to the type of analysis required as it can accommodate advanced models for all 

the materials likely to be encountered from the steel casing to the cement and the formation.  It has an extensive 

failure modelling capability which can include de-bonding, fracture and crack growth as well as cyclic plasticity. 

4.2.6 Proprietary software developed by others 

The literature review did uncover work done by others that is similar in principal of designing for thermal shock 

which is similar to the work required for this project.  Total developed a coupled thermal and structural model 

of a SAGD well to improve the design of such wells, [5].  This software is the property of the operator and so 

will not be available to this project, but the principals guiding its development may be of use. 

There are also other FE software tools that have been used by others investigating well structural behaviour, 

[27], but these don’t offer anything above and beyond what ABAQUS can provide. 
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4.3 Literature Review Of Failure and Risk Assessments Of Thermal Shock 

The search for literature concerning failure of well barriers uncovered limited published information concerning 

the failure of well barrier elements as a result of thermal shock.  There is much literature concerning well barrier 

and well integrity failure in general. As recently as 2016, Wu et al, [118], performed a study that provides failure 

rates for well barriers, but does not attribute failure to a specific mechanism, though failure mechanisms are 

categorised.  King et al, [14], also conducted a review of well and well barriers though concluded that the failure 

rate of oil and gas wells that result in a release of hydrocarbons to the environment as extremely low and while 

barrier failures occur with greater frequency, provided a multi-barrier philosophy had been adopted in the well 

design this rarely led to a loss of well integrity.  This work also categorises the failures by barrier type, age of 

the well, its geographic location and its type.  Tubular connections were found to be the dominant barrier failure 

type but modern connection designs have drastically reduced their prevalence.  High Pressure/High Temperature 

wells were found to have a higher failure rate than their lower pressure and temperature counterparts. 

There have been various studies surrounding the prevalence and management of sustained casing pressure 

(SCP).  A 2001 JIP, [16] looked at best practice for the prevention and management of SCP and recognised the 

importance of temperature cycling and designing all pressure barriers for the correct temperature extremes.  

While there was no mention of thermal shock per se, the need to consider the cold shut-in condition, (when 

production fluids have cooled during an extended shut in), in the design of tubing and casing strings was 

recognised and provides the closest description yet found of the BSEE BAA posed definition of thermal shock, 

[1]. 

More recently, work has been performed to predict SCP build-up and gas influx rates as functions of time given 

a cement column of known permeability exists in the annulus, [17].  However, the assumption here is that even 

an intact undamaged cement column will allow gas migration through it.  The gas influx rate being inversely 

proportional to the length of the cement column.  This doesn’t account for damaged cement or the presence of 

a micro-annulus between cement and casing nor the causes of the same. 

US regulatory guidelines recognize the challenges of SCP and that all parts of the well should be designed with 

extreme temperature considerations per API, [21]; although thermal shock is never mentioned explicitly. 

It would reasonable to conclude that thermal shock has not specifically been investigated in the context of SCP 

and that the current research work was not repeating previous work. 
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5 DETERMINE THERMAL SHOCK AND WELL LOAD HISTOGRAMS 

The section outlines the approach used to develop the thermal loads and wellbore load histogram that were used 

to investigate the effects of thermal shock in OCS well bore integrity. Thermal shock refers to thermal changes 

generated during well construction or operation that contribute to stresses in various well barriers.  The well and 

its barriers must withstand these stresses and remain a closed flow path for produced well fluids.   

The process used for this task was to use the information gathered as part of the literature review and to develop 

the various following subtasks:  

 Obtain wellbore schematics of a well that would be typical for a HPHT well in the OCS;  

 It was intended that wells would be categorized to account for water depth, target depth and pressure and 

temperature ranges; shelf, deep-water and HPHT would seem a sensible split of likely well profiles and 

construction and analyzed. However, due to the complex nature of modelling the entire well a single well 

design with varying cement mixes was used.  

These various subtask lead to the development of the well load histograms and well configurations that will be 

used in the more detailed modelling of wells subsequent tasks if required.  

It is proposed that the occurrence of thermal shock may be defined as a magnitude of temperature delta over the 

time at which it changes.  Therefore thermal shock may or may not occur depending on various conditions in 

the wellbore. The results of this task will be used to investigate the potential of thermal shock in Task 4. 

Depending on the results of Task 4, the definition of thermal shock may be modified as needed. 

5.1 Objectives 

The objective of this task was to develop and present the proposed well schematics and well loading histograms 

developed from information compiled earlier in the project. The results will be used for the modelling of various 

well configurations in subsequent tasks.  

5.2 Obtain Wellbore Schematics for OCS Wells 

Various searches for publicly known wellbore schematics of a HPHT OCS in the GOM were performed. This 

included online searches using the BSEE well data query as well as discussions with operators. Wellbore 

schematics are considered proprietary information and are not public knowledge, especially if the well is still 

under construction or still in the production phase. Information regarding various HPHT wells throughout the 

world is available, particularly in the North Sea. Using available information from various sources a “generic” 

well was developed. The casing/tubing, hangers, connections etc. will be comprised of commonly used sizes 
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and material grades. This generic schematic will be considered a base case and may be modified as required 

based on the feedback from the industrial advisory group and BSEE and or if analysis findings warrant.  

The focus for this project is OCS wells.  In particular it was felt that the Lower Tertiary (LT) GOM would be a 

good starting point given the target depths in that play, (25000°F t to 35000°F t TVD range) would be deep 

enough to generate the bottom-hole temperature of 350°F to be compatible with the definition of thermal shock 

shown in Appendix B. 

Figure 2 shows a well design similar to GOM wells. Since actual well schematics are proprietary and generally 

not available to the public, WWC presented the proposed configuration to the advisory group for feedback.  
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Figure 2   Representative Wellbore Schematic 
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5.3 Categorize OCS Wells 

At least 3 categories of wells were originally envisaged to account for water depth, target depth and pressure 

and temperature ranges to provide a sensible split of likely well profiles and construction; for example shelf, 

deep-water and HPHT. However, the project team considered it more appropriate to start with the generic 

wellbore as defined previously and obtain feedback from the advisory group to categorize as necessary and to 

allow for sensitivity studies to analyze the effects various well depths, casing programs, etc., have on the 

response to thermal shock. After initial results it was determined that it is more beneficial to the project 

objectives to focus on varying the cement mixes and stimulation rates. 

The use of a generic wellbore still provides the ability to achieve the project objective but allows a more efficient 

analysis approach in the FEA. 

5.4 Develop Temperature Profiles and Load History for Wells  

Primary outputs from this subtask are appropriate load histograms and a clear definition of thermal shock. This 

sub-task made use of the range of tools available. Since developing a single computer model of the well and all 

barriers is not feasible due to the length scales involved in the well; and the potential need to resolve the 

temperature and pressure fields and subsequently the stress field in 3D. Therefore a combination of models and 

tools was used. For this study the commercially available well design software. Any gaps found in the software 

with regards to thermal shock of a well is addressed by the use of the general purpose FEA software ABAQUS. 

The drilling and completions phase of a well is a small part of the life a well when compared to the production 

phase. Also in the production phase the fluid flows through the well at different temperatures, pressures and 

viscosity than that is used for drilling/completions. However, to fully understand the effects thermal shocking 

may have on the well, this phase must be considered. The load history has been simplified to assume that there 

were minimal issues during this phase. Table 1 shows a representation of the load sequencing histogram for the 

drilling and completion phase of the well. This histogram was considered as the base load history for the wells 

and was modified as required based on feedback from the industrial advisory group and BSEE regarding the 

proposed well schematic. However, based on modelling limitations the drilling and completion phase did not 

include the actual temperature changes from circulation during cementing.  
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Table 1Well load histogram for drilling and completion phase of well life cycle 

Operation 
Time Duration 

(Scale) 
Comments 

1. Drill Surface Casing Hole Days  

2. Log Surface Casing Hole Hours  

3. Condition Surface Casing Hole Hours  

4. Run Surface Casing Hours  

5. Cement Surface Casing Hours  

6. Drill Intermediate Casing Hole Days Thermal shock of surface casing ^ 

7. Log Intermediate Casing Hole Hours  

8. Condition Intermediate Casing  Hole Hours  

9. Run Intermediate Casing  Hours  

10. Cement Intermediate Casing  Hours  

11. Drill Production Casing Hole Days Thermal shock of intermediate casing 

12. Log Production Casing Hole Hours  

13. Condition Production Casing  Hole Hours  

14. Run Production Casing  Hours  

15. Cement Production Casing  Hours  

16. Drill Production Liner Hole Days Thermal shock of production casing 

17. Log Production Liner Hole Hours  

18. Condition Production Liner  Hole Hours  

19. Run Production Liner  Hours  

20. Cement Production Liner  Hours  

21. Clean-up Production Liner for Tie-back Hours  

22. Run and Set Production Tie-back Days  

^ depends on shoe depth 

The majority of the well life is in the production phase which may be anywhere from 10-20 years for a deep-

water well. For this investigation at life cycle of 20 years has been assumed for the development of the loading 

histogram. The main purpose of this histogram is capturing a set and sequence of likely loads a well will be 

subjected to during its lifespan, such as shut-ins, well stimulations, etc. The load history was based on experience 

for wells in the GOM region.  It includes mandatory shut-ins when testing safety equipment, storms and planned 
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stimulations/reservoir management. The base load histogram for the production phase is shown in Table 2. This 

load history was considered a base case to study the entire production life of the well. Other comparative cases 

were performed as well. 

Table 2 Well load histogram for 20 year production phase of well life cycle 

Operation Events per year 
Duration 

(Scale) 
Comments 

Shut in to test actuated master valve 12 Hours-Days Potential for thermal 

shock during any 

shut-in 
Shut in to test subsurface safety valve 2 Hours-Days 

Shut in due to weather induced events 3 Days 

Shut in due to production/equipment problems 4 Hours-Days 

Shut in for reservoir management 1 / 1.5 years Days 

Stimulation 1 / 4 years Days Thermal shock 

    

Potential number of shut ins over a 20 year life cycle 438 

  
Additional casing loads from BOP’s, over-pull, etc. is accounted for well configurations. It is anticipated that 

these loads will have a small contribution to overall loading when compared to the thermal loads. 

5.5 WellCAT Analysis 

The commercial software tool WellCAT was used to develop the global thermal profiles for the well. The 

loading histogram previously mentioned was used as input for both the drilling and production phases. 

Temperature profiles for the well were generated for the various construction and production operations. A 

temperature vs time history profile is generated for the entire depth of the wellbore for the various strings. The 

temperature profiles and preload conditions will be applied to a global and local FEA model in The FEA. A 

various range of temperature conditions will be assessed. Initial temperature profiles are based on ambient air 

temperature of 80 deg. Fahrenheit, mudline temperature of 40 deg. Fahrenheit and bottom hole static 

temperature of 350 deg. Fahrenheit.  

Figure 3 shows the representative temperature versus depth profile of the wellbore at various points in time 

during the drilling and completion phase for the production casing string. Profiles for the annulus, conductor, 
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surface casing, etc. are generated and used for input as well. The resulting profiles for the wellbore temperatures 

are used as inputs into the FEA models in the FEA.  

 

Figure 3   Temperature profile for well during final cementing phase of drilling 

Figure 4 shows the representative temperature versus depth profile of the wellbore at various points in time 

duration the production phase for the production casing string. Profiles for the annulus, conductor, surface 

casing, etc. were generated as well. The resulting profiles for the wellbore temperatures were used as inputs into 

the FEA models in the FEA.  
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Figure 4   Temperature profile for well for various operations during production phase 

Figure 5 shows the representative temperature versus depth profile of the formation near the wellbore at various 

points in time during the production phase. The resulting profiles for the wellbore temperatures were used as 

inputs into the FEA models in The FEA to set initial geostatic conditions and use as validation of the resulting 

temperature distribution in the formation in the FEA model. 
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Figure 5   Temperature profile in formation near wellbore 

5.6 ABAQUS FEA  

ABAQUS FEA was used to develop further the thermal profile and load histogram of the well and its 

constituents. The intent of this subtask was to develop efficient methods for building a global FEA model that 

the loading history and conditions is applied.  

A global axisymmetric finite element model of the entire wellbore was selected as this best modelled the global 

wellbore system while maintaining computational efficiency. This model could simultaneously account for 

thermal and mechanical loads imposed on the well.   

The formation surrounding the wellbore was explicitly accounted for in the axisymmetric model.  The formation 

is modelled as a homogenous solid which is vary in layers vertically along the wellbore to allow for varying the 

elasticity of the formation.  .   
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5.7 Task Findings 

Potentially there are various thermal loadings and well configurations that could cause a thermal shock scenario 

for OCS wells that could result in a loss of one or more well barriers. However, based on the temperature 

profiles; stimulating operations particularly when injecting with a fluid that is substantially cooler than the 

temperature of the producing wellbore, seem to pose the highest risk to damaging components of the well. It 

was observed that stimulation operations generate a larger temperature gradient from the production 

temperatures when compared to the gradients caused by the production phase followed by shut-in conditions at 

the same time points.  

5.7.1 Thermal Shock Definition 

At the outset of the project the definition of thermal shock was developed from the statements in the BSEE 

BAA, [1] as: 

 Wells with a bottom hole temperature of 350°F or above combined with a minimum ambient temperature as 

low as 40°F. 

 Thermal shock could be initiated by shutting in a producing well and allowing it to cool to ambient or by 

stimulating a well. 

 Thermal shock not only depends on the temperature range but also the rate at which temperature changes.  

The rate of cooling of the well would depend on the operations considered, e.g. natural cooling post shut-in 

or cooling during well stimulation for example.   

It is proposed that thermal shock may be defined as a magnitude of temperature change over the time at which 

it changes.  Therefore thermal shock may or may not occur depending on various conditions in the wellbore. 

The results of this task were used to investigate the damage potential of various thermal shocks in the FEA.  
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6 WELL AND BARRIER RESPONSE 

6.1 Summary 

The FEA modelling performed revealed some significant findings, namely: 

 That a shut-in of a producing Deepwater HPHT well does represent a thermal shock that can damage cement, 

particularly in the upper part of the well, however a large accumulation of production/shut-in cycles is 

required to significantly damage the barrier. 

 The HPHT well investigated was able to maintain zonal isolation for a complete production life of 20 years, 

assuming a good cement job had been completed in the first instance. 

 Stimulating a well does significantly more damage to the cement than a normal production/shut-in cycle and 

that damage can extend a significant distance up the well bore. It therefore represents a greater risk to the 

well barrier. 

 Because the FE model encompasses the entire wellbore, damage locations can be readily identified in one 

well model.  To WWC’s knowledge this is the first time this has been achieved for a deep water well. 

 The modelling indicates that production/shut-in damage is restricted to the upper cement annuli whereas 

stimulation damages the deeper cement barriers because the temperature changes are greatest in each case 

at the top and bottom of the well respectively. 

 The cement designs and quality of placement of cement in the wellbore during completions is critical to the 

performance of the well. Although one cement mix design is not always adequate for all situations and 

environments it was found that in general more brittle cements are less durable and failure will occur at 

fewer cycles. This is true for all wells but is more pronounced in the HPHT variety. A high compressive or 

tensile strength does not always indicate the ability to withstand a greater number of load cycles; rather a 

balance of high compressive strength or tensile strengths coupled with a lower elastic modulus seemed to 

perform the best.  

  



 

 

  

Title: Final Report 

Client: BSEE 

Project: Thermal Shock Technology / E16PC00010 
 

 

 

  

 Document ID Document Owner Page Template ID / Revision No. 

TM-PM-17  Alistair Gill Page 31 of 127 TM-PM-17 (01) 

 

6.2 FEA Global Response Modelling And Tie In Known FEA Model Data 

A finite element model of the full measured depth (MD) of the well bore has been constructed, see Figure 6.  

This takes into account all tubular strings from conductor to production tubing along with both liquid and cement 

filled annuli through the full depth of the well.  

The Explicit FEA solver was used in the scale modelling performed in the previous BSEE work “Well 

Stimulation Effects on Annular Seal of Production Casing in OCS Oil and Gas Operations” (BSEE#728) as it 

is better suited to handle the extreme non-linearity behavior of cement. However when modelling the entire 

wellbore geometry there are considerations regarding the selection of the FEA solver used due to the 

computational requirements of the large model involved. To reduce the computational expense required of 

modelling an entire well an axi-symmetric model was used and was therefore only able to model vertical well 

configurations. In addition, the Explicit solver was not compatible with axi-symmetric models and thus the 

Standard Implicit FEA solver within ABAQUS was used. Material models used in Task 4 and 5 were selected 

to allow for interoperability between the Standard and Explicit solvers. Due to the complexity and convergence 

issues that were encountered during the project a single geometry wellbore was investigated instead of multiple 

configurations to achieve the objectives of the project.  

Various cement designs based on mixes in use today in various OCS cementing operations for surface, 

intermediate, and production depths were utilized in the analysis to study the effects of cement these designs on 

the response of the wellbore when exposed to thermal events.  

Large departure well effects were studied using local FEA model to compare a deviated versus non-deviated 

section of a well and are discussed in Section 6.3. 

The model also included an appropriate representation of the formation, with stiffness varying as appropriate 

with depth. 

The material strength properties defined for laboratory scale testing were used; to help with convergence issues 

and model stability the individual components were assembled using “hard contact” or tie constraints. De-

bonding and micro-annulus cracking are therefore investigated using the individual damage intensities in tension 

or compression respectively as well as the cracking strains.  

The run in and cementing sequence for each tubular is accounted for by performing a series of analysis steps 

that form the open hole and progressively activates elements representing the tubulars according to the well 

construction sequence. The cementing process is reflected during the well construction steps in a similar fashion.  
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Cement is added to the annulus to ensure the string buoyant weight is correct and then either tie constraints or 

hard contact between the cement and tubulars is activated after the cement placement has occurred.  

 

Figure 6   Global FE model 

The analysis included a 20 step process to simulate the well construction phase as follows: 

 Step 1 – Geostatic equilibrium of formation 

 Step 2 – Remove open hole material  

 Step 3  - Run-in conductor 

 Step 4 – Cement conductor 

 Step 5 – Run-in casing 1 

 Step 6 – Cement casing 1 

 Step 7 – Run-in casing 2 

 Step 8 – Cement casing 2 

 Step 9 – Run-in casing 3 / liner 

 Step 10 – Cement casing 3 

 Step 11 – Run-in casing 4 / liner 

 Step 12 – Cement casing 4 

 Step 13 – Run-in casing 5 
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 Step 14 – Cement casing 5 

 Step 15 – Run-in casing 6 / liner 

 Step 16 – Cement casing 6/liner  

 Step 17 – Run-in casing 7 

 Step 18 – Cement casing 7 

 Step 19 – Run-in production tubing  

 Step 20 – Lock production tubing at packer. 

Intermediate steps were also included during the cementing process not shown in the above list. 

The well was modelled as an uncoupled heat transfer problem. The temperature field is calculated without 

consideration of the stress/deformation of constituent parts of the well, which is reasonable in the context of an 

oil well as the deformation of the steel tubulars does not alter the heat transfer characterist ics of the well.  

The FE model also accounted for thermal convection as well as conduction for any fluid filled cavities such as 

annuli.  The effects of fluid convection could not be captured explicitly by the FE solid model.  However, the 

effective conductivity of the fluid regions was been modified to account for this.  See later discussion under 

validation, Section 6.2.2. 

Once the well run- in sequence was complete the well was brought onto production and the well warmed up to 

its steady state production temperature.  Thermal shock load cases were then carried out. 

6.2.1 Thermal Shock Load Cases: 

The entire well structure was initialised with the geostatic temperature profile, in this case assuming a mudline 

temperature of 40˚F and bottom-hole temperature of 350˚F, see Figure 7. 

 Production – bottom hole temperature = 350˚F, well flow rate set as 20,000 bpd.  Solved until steady state 

delivery temperature was reached, see Figure 8. 

 Shut-in – well flow was halted and the well allowed to cool to ambient, Figure 9 and Figure 10 show profile 

at 5 days and 60 days respectively 

 Stimulation – post shut-in well flow direction was reversed and surface ambient fluid injected – rates 20,000 

bpd for 48 hours and 60,000 bpd for 24 hours – cooldown of the hot end of the well, Figure 13 show contours 

after 48 hours injection at 20,000 bpd, 60,000 bpd is similar. 
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Figure 7   Global FE model – Initial temperature profile 

Note this view has the x and z coordinates magnified x100 for clarity. 
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Figure 8   Global FE model – Production temperature profile 20kbpd 

Note this view has the x and z coordinates magnified x1000 for clarity. 
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Figure 9   Global FE model – Shut in temperature profile at approximately 5 days 

Note this view has the x and z coordinates magnified x1000 for clarity. 
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Figure 10   Global FE model – Shut in temperature profile at approximately 60 days 

Note this view has the x and z coordinates magnified x1000 for clarity. 
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Figure 11   Global FE model – Well production/shut-in temperature response for 10kbpd 

Figure 11 shows typical temperature histories at different casing shoe depths throughout the well during a 

production/shut-in cycle. Despite the low ambient temperature at the top of the well the higher temperatures at 

the base of the well, the maximum temperature range occurs some distance down the well, in this case at the 

18” casing shoe. 
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Figure 12   Global FE model – Well stimulation temperature profile 

Note this view has the x and z coordinates magnified x100 for clarity 

6.2.2 FEA v CFD modelling – convective heat transfer verification 

The mechanical stresses introduced as a result of temperature effects are dependent upon both the temporal and 

spatial temperature gradients in addition to temperature magnitudes.  Therefore it was considered critical to the 

objectives of this project that temperature effects were accounted for as accurately as possible. 

Finite element models typically can only model conductive heat transfer. Convection within a fluid cannot be 

simulated directly using solid based finite element models.  A fluid’s ability to transfer heat may be dominated 

by convection (fluid movement) if heated from below or from the side. To overcome this, the effective thermal 

conductivity, keff, can be adjusted so that the solid transmits thermal energy at the same rate its fluid counterpart.  

However, the keff value changes with temperature gradient and hence time, so a single effective conductivity 

value could not be used here. 
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To determine appropriate keff values for both the production tubing and any liquid filled annuli a series of 

simulations were performed using computational fluid dynamics (CFD) to determine the correct thermal 

response.  A finite element analysis was them compared against the CFD to confirm the correct keff had been 

determined. 

An example is shown in Figure 13. Here a test model, comprising a 30m section of production tubing was filled 

with flowing water.  Flow and temperature was solved to achieve a delivery temperature using both an FE model 

and a CFD model. The k value within the FE model was varied.  The flow is then stopped and the model is 

allowed to cool. 

 

Figure 13   Local FE model – cooldown response 

It is clear from the cooldown response that the k value chosen made a significant difference.  It was also apparent 

that a single value of k in the FE model fails to match the cooldown response of the CFD model. 

However, when the same test was repeated with a variable k value, a good match was achieved. See Figure 14. 
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Figure 14   Local FE model – cooldown response matching 

A series of larger CFD models of different sections of the wellbore were developed to determine keff for different 

elevations and wellbore cross-sections.  An example is shown in Figure 15. The fluid with the main bore and 

the annuli is being cooled following a shut-in. The velocity vectors within the main bore and the two adjacent 

annuli are shown. As can be seen the vectors within the annuli travel upwards near a warmer wall at smaller 

radius and downwards near the cooler wall at bigger radius due to density variations (i.e. natural convection). 
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Figure 15   Local CFD model – thermal response matching – velocity vectors in multiple annuli 

The thermal response model was checked against WellCAT with good agreement. 

6.2.3 Global Model Mesh Sensitivity Check 

To ensure that the finite element mesh used in the global well models was suitably refined, local highly refined 

mesh models were used to compare to the thermal response of the coarser global model.  See Figure 16.  In this 

case the local model represented a 2D horizontal slice at 1000°F t below mudline. 

The 2D local and global models were in very good agreement. 

Main bore Annuli

Steel Cement
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Figure 16   Mesh refinement checks – Global v Local FEA model 
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6.2.4 Thermal Shock Response and tie in known FEA model data 

The ABAQUS FE model that solves the thermal and structural response used a similar finite element mesh, 

simply swapping heat transfer elements for their structural equivalent.  The temperature field from the thermal 

analysis was mapped onto the structural model and the structural response solved. A nominal annular pressure 

ranging from 25-250 psi due to the thermal expansion of the annular fluids was applied. It was assumed that the 

annular pressure was monitored and managed per API requirements. 

The global model also includes damage models for the cement to identify when and where cement damage 

occurs.  These damage models are validated against experiments – see Task 5. 

The cement damage can cause solution stability issues in the global response model that can been difficult to 

predict. As a result some of the cement materials defined in Task 5 was found to have convergence difficulties 

in the global model. However, some of the cement properties previously known and validated were used to 

analyse the well’s response with various cement mixes.  

Table 3 Cements use in global well 

ID Young’s 

Modulus 

[psi] 

Poisson’s 

Ratio 

Strength 

 Comp. 

[psi] 

Tensile 

[psi] 

HDV09675-5-2c “2c” 2.20E6 0.26 6310 706 

Previously defined in 

prior BSEE project 

E14PC00037 

“A” 4.80E5 0.31 324 58 

Previously defined in 

prior BSEE project 

E14PC00037 

“B” 1.93E6 0.23 3207 387 

 

To evaluate the response and performance of the well over its lifespan the loading histogram as defined in Table 

2. The cement used in this load case was the 2c design as shown in Table 3.  

In addition to the twenty year life cycle case, a case to perform a comparative analysis to check the well’s 

response to different stimulation rates and cement mixes was completed. In this scenario the well was cycled 4 

times with each complete cycle consisting of production, shut-in and stimulation. Due to long analysis times no 
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intermediate production/shut-in cycles were included, however these cases provide valuable information.  Table 

4 shows the load cases analysed.  

  



 

 

  

Title: Final Report 

Client: BSEE 

Project: Thermal Shock Technology / E16PC00010 
 

 

 

  

 Document ID Document Owner Page Template ID / Revision No. 

TM-PM-17  Alistair Gill Page 46 of 127 TM-PM-17 (01) 

 

Table 4 Well load cases investigated 

Case Cement Injection Rate Comments 

Full 20yr life cycle “2c” 20,000 bpd  

Cycle-4x-20-6310 “2c” 20,000 bpd No intermediate prod/shut-in 

Cycle-4x-60-6310 “2c” 60,000 bpd No intermediate prod/shut-in 

Cycle-4x-20-3207 “B” 20,000 bpd No intermediate prod/shut-in 

Cycle-4x-60-3207 “B” 60,000 bpd No intermediate prod/shut-in 

Cycle-4x-20-324 “A” 20,000 bpd No intermediate prod/shut-in 

 
 

6.2.4.1 Thermal shock response results 

The results of the twenty year life cycle case indicate some damage in the lower portions of the cement in the 

well. However, the damage does not propagate the entire height of the cement column. It is also observed that 

the magnitude of damage from stimulating the well is much greater than a typical production and shut-in cycle 

and occurs at the lower end of the well. 

The damage in the cement from after the first year of production/shut-in cycles is shown in Figure 17; and after 

four years of production/shut-in cycles (prior to the first stimulation occurrence) is shown in Figure 18. 

The damage to the element (SDEG) shown is not an indicator that loss of isolation has occurred, a more complete 

explanation of SDEG is given in Figure 27. 
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Figure 17   Cement damage after first year of cycles  

Note this view has the x and z coordinates magnified for clarity. 
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Figure 18   Cement damage after first four years of cycles  

Note this view has the x and z coordinates magnified for clarity. 
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The damage in the cement immediately after the first stimulation and warm-up occurrence is shown in Figure 

19. 

 

Figure 19   Cement damage after first stimulation occurrence 

Note this view has the x and z coordinates magnified for clarity.  
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The damage in the cement after four more years (8 total) of production/shut-in cycles (prior to the second 

stimulation occurrence) is shown in Figure 20. 

 

Figure 20   Cement damage after eight years of cycles 

Note this view has the x and z coordinates magnified for clarity. 
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The damage in the cement immediately after the second stimulation and warm-up occurrence is shown in Figure 

21. 

 

Figure 21   Cement damage after second stimulation occurrence 

Note this view has the x and z coordinates magnified for clarity. 
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The damage in the cement after four more years (12 total) of production/shut-in cycles (prior to the third 

stimulation occurrence) is shown in Figure 22. 

 

Figure 22   Cement damage after 12 years of cycles 

Note this view has the x and z coordinates magnified for clarity. 
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The damage in the cement immediately after the third stimulation and warm-up occurrence is shown in Figure 

23 

 

Figure 23   Cement damage after third stimulation occurrence 

Note this view has the x and z coordinates magnified for clarity. 
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The damage in the cement after four more years (16 total) of production/shut-in cycles (prior to the forth 

stimulation occurrence) is shown in Figure 24. 

 

 

Figure 24   Cement damage after 16 years of cycles 

Note this view has the x and z coordinates magnified for clarity. 
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The damage in the cement immediately after the fourth stimulation and warm-up occurrence is shown in Figure 

25. 

 

 

Figure 25   Cement damage after fourth stimulation occurrence 

Note this view has the x and z coordinates magnified for clarity. 
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The damage in the cement after four more years (20 total) of production/shut-in cycles (end of assumed 

production life) is shown in Figure 26 

 

Figure 26   Cement damage after 20 years of cycles 

Note this view has the x and z coordinates magnified for clarity. 

This represents the highest localized damage (SDEG) in the cement. The SDEG values from the FEA have been 

normalized with respect to 100%, meaning that elements that have reached 100% damage in the model are areas 

that indicate likelihood for the development of localized cracks/micro-annulus etc. and not a loss of isolation.  

The validation performed in Task 5 show that it is the magnitude of damage couple with the extent and location 

of damage is a better indicator of a seal barrier failure. The maximum damage in the cement over the life of the 

well is shown graphically in Figure 26.  
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Figure 27   Maximum local cement damage progression 
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The results of the Cycle-4x-20-6310 case are shown in Figure 28 to Figure 31 

 

Figure 28   Cycle-4x-20-6310 Case cement damage after first stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 29   Cycle-4x-20-6310 Case cement damage after second stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 30   Cycle-4x-20-6310 Case cement damage after third stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 31   Cycle-4x-20-6310 Case cement damage after fourth stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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The results of the Cycle-4x-60-6310 case are shown in Figure 32 to Figure 35. 

 

Figure 32   Cycle-4x-60-6310 Case cement damage after first stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 33   Cycle-4x-60-6310 Case cement damage after second stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 34   Cycle-4x-60-6310 Case cement damage after third stimulation 

Note this view has the x and z coordinates magnified for clarity. 



 

 

  

Title: Final Report 

Client: BSEE 

Project: Thermal Shock Technology / E16PC00010 
 

 

 

  

 Document ID Document Owner Page Template ID / Revision No. 

TM-PM-17  Alistair Gill Page 65 of 127 TM-PM-17 (01) 

 

 

Figure 35   Cycle-4x-60-6310 Case cement damage after fourth stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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The results of the Cycle-4x-20-3207 case are shown in Figure 36 to Figure 39. 

 

Figure 36   Cycle-4x-20-3207 Case cement damage after first stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 37   Cycle-4x-20-3207 Case cement damage after second stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 38   Cycle-4x-20-3207 Case cement damage after third stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 39   Cycle-4x-20-3207 Case cement damage after fourth stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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The results of the Cycle-4x-60-3207 case are shown in Figure 40 to Figure 43. 

 

Figure 40   Cycle-4x-60-3207 Case cement damage after first stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 41   Cycle-4x-60-3207 Case cement damage after second stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 42   Cycle-4x-60-3207 Case cement damage after third stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 43   Cycle-4x-60-3207 Case cement damage after fourth stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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The results of the Cycle-4x-20-324case are shown in Figure 44 to Figure 47 . 

 

Figure 44   Cycle-4x-20-324 Case cement damage after first stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 45   Cycle-4x-20-324 Case cement damage after second stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 46   Cycle-4x-20-324 Case cement damage after third stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 47   Cycle-4x-20-324 Case cement damage after fourth stimulation 

Note this view has the x and z coordinates magnified for clarity. 
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The SDEG values from the FEA have been normalized with respect to 100%, meaning that elements that have 

reached 100% damage in the model are areas that indicate likelihood for the development of localized 

cracks/micro-annulus etc. and not a loss of isolation.  The validation performed in Task 5 show that it is the 

magnitude of damage couple with the extent and location of damage is a better indicator of a seal barrier failure. 

The maximum localized damage in the cement for each case configuration is shown graphically in Figure 48.  

 

Figure 48   Maximum localized cement damage comparison 

6.3 Local FEA Modelling and Tie in known Data 

Since a deviated well cannot be modelled axi-symmetrically a segment representing a down-hole section of a 

well was generated for a vertical well and a well that contains a departure angle approximately 0.5 deg/ft. The 

techniques used to create the structural models and the heat transfer models are similar to the scale modelling 

and are detailed in the Task 5 section. The computational expense of the local models was reduced by modelling 

a 375ft diameter x 1,000°F t depth section of soil assumed to be about 30,000°F t below the ocean floor. The 

formation temperature was assumed to be 350°F and an injection temperature for the stimulation fluid case was 

assumed to be 80°F. 
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The well was assumed to have a casing size of 7-5/8” outer diameter with a wall thickness of 3/8”. The diameter 

of the hole was assumed to be 9-5/8” diameter with the casing placed concentrically.  

The models were constructed using the same element types and element count for each. The formation was 

assumed to be fixed in the vertical direction at the top and bottom of the down-hole segment and fixed in the 

horizontal direction around the perimeter of the formation limits. To facilitate the comparison of the deviated 

versus non-deviated wells only thermal effects from the injection case into a very hot environment were 

considered. To limit analysis run times only one cycle was considered. This allows for a comparison of the two 

wells.  

6.3.1 Local FEA Modelling-Results 

The heat transfer analysis results for both the non-deviated well and the deviated well are shown in Figure 49 

to Figure 50 respectively. 

 

Figure 49   Heat transfer analysis results for vertical well 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 50   Heat transfer analysis results for deviated well 

Note this view has the x and z coordinates magnified for clarity. 
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The cement element damage results for both the non-deviated well and the deviated well are shown in Figure 

51 to Figure 52 respectively. 

 

Figure 51   Cement damage results for vertical well 

Note this view has the x and z coordinates magnified for clarity. 
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Figure 52   Cement damage results for deviated well 

Note this view has the x and z coordinates magnified for clarity. 
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6.4 Conclusions 

The FEA modelling performed has indicated that the definition of “thermal shock” as defined in Task 2 and 

Appendix A is a reasonable definition. It also confirmed some of the response from operators in the advisory 

group that production/shut-in is not as significant driver of damage in the well as stimulation. The long term 

durability of the well is highly associated with proper cement selection and quality of the cement placement. 

A shut-in of a producing deep water HPHT well does represent a thermal shock that can damage cement, 

particularly in the upper part of the well, however a large accumulation of production/shut-in cycles is required 

to significantly damage the barrier. This is in line with the opinions from some of the members of the advisory 

group.  

Stimulating a well does significantly more damage to the cement than a normal production/shut-in cycle and 

that damage can extend a significant distance up the well bore. It therefore represents a greater risk to the well 

barrier system. However, damage in the wellbore cement does not always indicate a loss of isolation.  

The HPHT well investigated was able to maintain zonal isolation for a complete production life of 20 years. As 

mentioned above stimulating the well did significantly more harm to the well than just production/shut-in cycles 

alone. It was noticed that after a stimulation event the damage in the upper portion of the well would undergo a 

slight increase for the first couple of cycles then level off and hold steady until the next stimulation occurs. This 

further suggests that stimulation is more significant concerning damage in the well. 

The two injection rates investigated of 14 bpm and 42 bpm (20 kbpd and 60 kbpd) revealed that the rate of 

injection increase of three times did cause an increase in damage in the cement, however the increase in the 

damage was around 10%. This indicates that the wellbore is likely more sensitive to the change in temperature 

than rate of change. 

The stresses in the tubulars were well within the working limits for typical grades of steel used in a wellbore. 

Based on findings from Task 2, it appears that standard practices in the design of the tubulars, while not 

explicitly calling it thermal shock, do account for it in the process of checking them against thermal induced 

stresses. In addition the behavior of steels at higher temperatures also has been better understood historically.  

The cement designs and quality of placement of cement in the wellbore during completions is very critical to 

the performance of the well barrier system. Although one cement mix design is not always adequate for all 

situations and environments it was found that in general the more brittle the cement is, the less durable and 

failure will occur at fewer cycles. This is true for all wells but is more pronounced in HPHT wells. A high 

compressive or tensile strength does not always indicate the ability to withstand a greater number of load cycles; 
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rather a balance of high compressive strength or tensile strengths coupled with a lower elastic modulus 

performed the best.  

It was also revealed that a deviated well is potentially more susceptible to a higher magnitude of damage 

compared to a vertical well when compared under identical loading scenarios.  

Mitigation recommendations are included in Task 6. 
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7 LABORATORY SCALE TESTING  

7.1 Physical Property Testing 

A series of mechanical tests have been performed to characterize material properties for the cement for input to 

the FEA.  These are listed below: 

 Shear Bond 

 Tensile Strength – Indirect “Brazil test” + Direct pull 

 Tensile Modulus 

 Compressive strength 

 Compressive modulus / Poisson’s ratio 

 Impact resistance 

Significantly more effort was placed on this stage of the testing than in previous projects.  Previously the quality 

of the mechanical properties, particularly the tensile strength and modulus were not at the desired level, meaning 

that the FE work has to estimate certain characteristics.  For this project the higher fidelity achieved to gather 

the tensile strength and modulus means better inputs to the FE have been established. 

The shear bond test apparatus used both for curing and testing the samples is shown in Figure 53, impact testing 

in Figure 54 and compression testing in Figure 55. 

The direct tensile test utilized a new test sample set up.  Instead of the more usual “dog bone” type test, a cylinder 

of cement was cast and cured with steel bolts embedded into it was used, see Figure 57.  This allowed for a 

more accurate measurement of the tensile strength and modulus. 
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Figure 53   Shear bond testing set-up 

 

Figure 54   Impact testing set-up LEFT / Compression testing RIGHT 
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An example of the compression testing is shown in Figure 3. 

 

Figure 55   Compression testing – pre-failure LEFT / post failure RIGHT 

 

Figure 56   Tensile testing – Indirect Tension – “Brazil Test” 
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Figure 57   Tensile testing – direct test mould and test sample 

Cement blend samples judged to be representative of various depths through the well, typical of those used on 

GOM, were cured and tested.  The data sheets for those cement blends are provided in Appendix A.  The results 

and mechanical properties are summarized below. 
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Table 5 Cement Property Summary 

ID TVD  

[ft] 

Casing/ 

Liner 

Density 

[lb/gal] 

Young’s 

Modulus 

[psi] 

Poission’s 

Ratio 

Strength 

 Compressive 

[psi] 

Tensile 

[psi] 

HDV09675-5-4d 4500 20 in 16.4 1.11E6 0.21 1309 243 

HDV09675-5-1b 4200 14 in 12.0 3.18E5 0.26 448 69 

HDV09675-5-5a 6700 16 in 

Liner 

13.5 7.35E5 0.28 1858 253 

HDV09675-5-2c 12100 9 5/8 in 17.0 2.20E6 0.26 6310 706 

HDV09675-5-3b 16500 5 in 

Liner 

- 1.67E6 0.27 5044 571 

HDV09675-5-6d 17000 9 5/8 in 16.4 1.67E6 0.27 10732 1114 

      

7.2 FEA Modelling 

3D finite element models of the test setups were created using ABAQUS 2017 [23] and solved using the Explicit 

solver. The Explicit solver was chosen as modelling unreinforced concrete/cement materials can sometimes 

cause convergence problems in the Standard (Implicit) solver due to the extreme non-linearity caused by 

cracking,  ( as was encountered in the global model), which is even more pronounced on the smaller scaled 

models. The Explicit solver is computationally efficient for analysis of extremely discontinuous events, such as 

cracking in cement, and can be used to perform quasi-static analyses with complicated contact conditions. Time 

increments in the Explicit solver are influenced by the overall event time scale, element shape and mass of the 

system; therefore in order to reduce solve time a combination of mass scaling and reduction of step times were 

used. To ensure that this method did not influence the solution, energy histories for the systems were checked 

and the mass scaling used was varied as required.  

To reduce computational expense, a one-fourth of the test setup was modelled by using symmetry planes in both 

the small and large scale models. The extent of the sand bed at the bottom of the cement was limited to reduce 

the computational expense of the model. The sand is to allow for the placement of cement in the pipes and create 

a space where the bottom of the cement can be pressurized when testing.  
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The small scale assembly is shown in Figure 58 and the large scale assembly is shown in Figure 59.   

 

Figure 58   Small scale FEA model assembly  
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Figure 59   Large scale FEA model assembly 
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Where possible, 8 node reduced integration brick elements (C3D8R) were used. General views of the mesh used 

in the models are shown in Figure 60 and Figure 61.  

 

Figure 60   Small scale FEA element mesh 
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Figure 61   Large scale FEA element mesh 

Note this view has the x and z coordinates magnified for clarity 

 



 

 

  

Title: Final Report 

Client: BSEE 

Project: Thermal Shock Technology / E16PC00010 
 

 

 

  

 Document ID Document Owner Page Template ID / Revision No. 

TM-PM-17  Alistair Gill Page 94 of 127 TM-PM-17 (01) 

 

7.2.1 Boundary Conditions and Initial Conditions 

The small scale and large scale models were restrained by fixing the base of the outer pipe in the vertical and 

horizontal directions. Symmetry planes were used in the X and Y planes. Boundary conditions for the small 

scale model are shown in Figure 62.  Note that the large scale model is similar. 

 

 

Figure 62   Small scale boundary conditions 

7.2.2 Contact Interactions 

The assembly of parts used to create the test model was held in space using contact interactions true to how the 

parts interact in reality. Surface to surface contact definitions were defined at the cement to coil tubing interface 

and at the cement to formation pipe interface. In previous lab validation the contacts were assigned a cohesive 
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behavior utilizing a traction separation based contact enforcement method.  However, the cement designs that 

were applied to the global model contact was modelled as either “hard contact’ or using tie constraints for the 

scale models since contact damage was not explicitly modelled in the global model due to convergence issues. 

De-bonding and micro-annulus formation is still accounted for by other diagnostic means such as element 

damage in either tension or compression as well as the plastic strains in close proximity to the cement to pipe 

locations.  

See Figure 63 for typical contact pairs in the small scale model, the large scale model is similar. 

 

Figure 63   Small scale interactions 

7.2.3 Cement damage modelling  

The cement sheaths were modelled using the concrete damaged plasticity model in ABAQUS. It provides a 

general capability for modelling concrete and other quasi-brittle materials in all types of structures by using the 

concepts of isotropic damaged elasticity in combination with isotropic tensile and compressive plasticity to 

represent the inelastic behavior of concrete. It consists of the combination of non-associated multi-hardening 

plasticity and scalar (isotropic) damaged elasticity to describe the irreversible damage that occurs during the 
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cracking process. The concrete damaged plasticity material model is interoperable between the Explicit and 

Standard solvers, therefore the defined materials can also be used in the global FEA models. 

The model is a continuum, plasticity-based, damage model for concrete and cements. It is based on the 

assumption that the main two failure mechanisms are tensile cracking and compressive crushing of the material. 

The evolution of the failure surface is controlled by two hardening variables, tensile and compressive equivalent 

plastic strains that are linked to failure mechanisms under tension and compression loading, respectively.  

The fracture energy criterion was used to model the cements brittle behavior by using a stress-displacement 

relationship. The stress-strain behavior of the cement in uniaxial compression outside of the elastic range is 

modelled by using compression hardening and strain softening.  

The concrete compression damage and concrete tension damage optional parameters were used to simulate the 

loss of stiffness of the cement as damage occurs. Maximum compressive stiffness reduction was set to 99% and 

90% for tension. Once these values are reached a complete loss of stiffness is assumed to occur. Element 

deactivation was enabled to remove these elements from the stiffness matrix at complete failure.  

7.2.4 Thermal analysis approach 

Thermal loads were applied by means of a sequentially un-coupled thermal stress analysis.  To accomplish this, 

a transient heat transfer analysis was first solved.  The nodal temperature values from the heat transfer analysis 

were then mapped onto the structural solution model.  The material definition in the structural model included 

a thermal expansion coefficient and thus the model developed thermal strains with the addition of a ∆T and 

thermal stresses when expansion was resisted by the stiffness of the structure. Since the heat transfer analysis 

and stress analysis are in different time period thermal properties and convection coefficients were converted 

into the appropriate time scale.  

A heat transfer analysis was performed for the small and large scale models. The temperature was varied over 

time using the load amplitude feature within ABAQUS to replicate the thermal cycling that was performed in 

the lab testing. A complete thermal cycle for the small scale testing consisted of activating the interior heating 

element for 150 minutes at approximately 215°F, then turning the heating off and then chilling the exterior of 

the testing fixture at 50°F for 150 minutes. The heat transfer analysis results were then mapped on to the 

structural model and allowed to cycle up to 50 complete cycles. The small scale testing consisted of curing the 

cement in the fixture at 190°F and then allowing the fixture to cool back to ambient; therefore the initial 

temperature of the large scale model was assumed to be at an ambient temperature of 72°F. The results from the 



 

 

  

Title: Final Report 

Client: BSEE 

Project: Thermal Shock Technology / E16PC00010 
 

 

 

  

 Document ID Document Owner Page Template ID / Revision No. 

TM-PM-17  Alistair Gill Page 97 of 127 TM-PM-17 (01) 

 

small scale heat transfer analysis are shown in Figure 64. Note that the cooldown from ambient was accounted 

for but not shown in the figure. 

 

Figure 64   Small scale heat transfer analysis results 

Thermal cycling for the large scale test was similar to the small scale with the exception that the interior pipe 

was cooled by circulating chilled water and the exterior was heated. A complete thermal cycle for the small 

scale testing consisted of circulating chilled water through the interior pipe for 150 minutes at approximately 

50°F and then turning off and then heating the exterior of the testing fixture at 230°F for 150 minutes. The heat 

transfer analysis results were then mapped on to the structural model and allowed to cycle to failure or up to 50 

complete cycles. 

The large scale testing consisted of curing the cement in the fixture at 190°F and then subsequently starting the 

temperature cycling without allowing the fixture to cool back to ambient; therefore the initial temperature of the 

large scale model was assumed to be at a temperature of 190°F. The results from the large scale heat transfer 

analysis are shown in Figure 65. 
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Figure 65   Large scale heat transfer analysis results 

7.2.5 Thermal properties 

Thermal expansion coefficient, conductivity and specific heat values for the cement mixes were determined by 

CSI and are shown in Appendix A. In order to reduce computational time, average values of the cement thermal 

properties were used to reduce the number heat transfer analysis required.  

The thermal expansion coefficient for steel was assumed to be 6.7x10-6 in/in-°F and 4.4x10-6 in/in-°F for the 

soil.  
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7.2.6 Thermal boundary conditions 

Surface boundary conditions were defined by giving the outer surfaces a convection coefficient and a sink 

temperature (water temperature or ambient air temperature).  The surfaces exposed to water were applied with 

a film coefficient that was set to 580 W/m2K and for surfaces exposed to air a film coefficient of 15 W/m2K 

was used. 
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7.3 Small Scale Lab Tests 

CSI performed the small scale thermal tests on the cements previously identified in Table 5 

The thermal shock test apparatus is explained below and shown diagrammatically in Figure 66.  

  

Figure 66   Thermal shock test schematic 

The test specimen comprises of an electric heater element embedded in a cylinder of cement which itself is 

surrounded by a metal sheath inside a metal cylinder.  A brass coil supplying cooling water then surrounds the 

outside metal cylinder.   
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A compressed air supply charges the base of the cement sample and flow is monitored through an inline flow 

meter. Thermocouples are embedded in the cement, just inside the outer wall and just outside the inner wall 

respectively. 

Once cured, the test begins by heating the sample for a prescribed time until both thermal couples measure 

steady temperatures.  Then the heating input is switched off and the cold water flow switched on to cool the 

sample.  The rates of heating and cooling can be adjusted to accommodate different temperature ramps by 

adjusting the energy input and the cooling water temperature.  This process is repeated to subject the sample to 

repeated thermal shocks until air bubbles appear at the top of the sample indicating the cement has failed through 

the height of the sample.  

The actual test lab test setup is shown in Figure 67. 

 

Figure 67   Thermal shock test apparatus 

7.3.1 Small Scale Thermal Shock Testing – Results 

Instant failure occurred on some of the tests where the air passed through the cement sample immediately; 

suggesting a failure of the curing process, see Figure 68. Test that failed immediately were attempted again and 



 

 

  

Title: Final Report 

Client: BSEE 

Project: Thermal Shock Technology / E16PC00010 
 

 

 

  

 Document ID Document Owner Page Template ID / Revision No. 

TM-PM-17  Alistair Gill Page 102 of 127 TM-PM-17 (01) 

 

successful results were achieved in all but two of the cement designs as shown in Table 6. An example of a 

successful test is shown in Figure 69.  This sampled eventually failed through a delamination of the cement to 

casing bond on the outer radius of the cement. 

 

Figure 68   Thermal shock test fail – pre-mature failure 

Pin hole in cement 
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Figure 69  Thermal shock test – failure on outer radius of cement 
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The cycle history for a typical sample is shown in Figure 70; note that the number of cycles vary per sample. 

 

Figure 70   Thermal shock example – cycle history 
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The structural response for HDV09675-5-2c is shown in Figure 71. Note the magnitude has been capped to 

identify potential leak paths. A possible leak path is represented as the yellow line. This failure mode was 

observed to be similar for the other samples that failed as well.  

 

 

Figure 71   Small scale failure example – FE response 
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Table 6 Comparison of FEA Results and Small Scale Tests 

ID Lab results FEA Results 

 NTEST  Location NFEA Estimated location 

HDV09675-5-4d 70 cycles Outer pipe 50 cycles No fail up to 50 cycles1 

HDV09675-5-1b Instant Failure Inconclusive 1 cycle Path goes from inner to outer 

HDV09675-5-5a No Failure N/A No Failure No fail up to 50 cycles 

HDV09675-5-2c 8 cycles Outer  7 cycles Path goes from inner to outer 

HDV09675-5-3b Instant Failure Inconclusive 2 cycles Path goes from inner to outer 

HDV09675-5-6d No Failure N/A 50 cycles No fail up to 50 cycles 

^FEA was performed up to a max of 50 cycles based on the low cycles to failure on early tests performed and 

prior to all of the lab tests completed. 

 

7.4 Large Scale Lab Tests 

Four attempts to perform the large scale tests were tried using the HDV09675-5-2c mix.  However, only one 

was able to achieve usable data suggesting that the sealing of the test fixtures is sensitive to the curing process. 

The test that was successfully run failed after only a few cycles. The results of this test are discussed later on. 

The schematic for the large scale test fixture is shown in Figure 72. 

                                            

 

 

1 This FEA model will be re-started and the cycle count will be increased until failure – results will be incorporated into 
final report. 
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Figure 72   Large scale test setup 

The test specimen comprises of a heater on the exterior of the fixture.  Chilled water is circulated through the 

interior pipe to cool the system.   

A compressed air supply charges the base of the cement sample and flow is monitored through an inline flow 

meter. Thermocouples are embedded in the cement, just inside the outer wall and just outside the inner wall 

respectively similar to the small scale tests. 

The heating and cooling can be adjusted to accommodate different temperature ramps by adjusting the energy 

input and the cooling water temperature.  This process is repeated to subject the sample to repeated thermal 

shocks until air bubbles appear at the top of the sample indicating the cement has failed through the height of 

the sample.  
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7.4.1 Large Scale Thermal Shock Testing – Results 

As mentioned previously the test that was successfully run failed after only a few cycles in the lab testing. Lab 

testing confirmed that the seal failed at the inner diameter of the outer pipe. The damage observed in the FEA 

analysis indicates that failure of the cement occurs at about 1 to 3 cycles. Significant damage starts to initiate at 

the onset of the first cycle and progresses rapidly throughout the cycle. The FEA results for the large scale test 

are shown in Figure 73. 

 

Figure 73   Large scale FEA at failure 
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7.5 Large Scale Thermal Shock Testing - Conclusions 

The lab testing and FEA modelling performed show that the FEA analysis can predict the failure of the cements 

used in the wellbore with very good accuracy.  

Although some of the samples experienced immediate failure, likely as a result of the thermal cycle induced by 

the curing process, it was observed that the same mixes experienced early failure in the FEA as well. It was 

generally observed that the samples that did not fail or had a significant number of cycles to failure in the lab 

also performed well in the analysis. It should be noted that cement response is influenced by many different 

factors such as loading conditions, confinement, etc. Meaning that one mix that does poorly in a certain scenario 

may perform well in another.  

A positive validation of the modelling techniques was provided by the HDV09675-5-2c cement sample.  It 

showed an excellent match at small scale test as it had 8 cycles to failure in the lab and approximately 6 cycles 

to failure in the FEA. The large scale test had immediate failure in one attempt and failure at 2 cycles in the lab 

and approximately 1-3 cycles to failure in the FEA.  

Therefore a high degree of confidence in the modelling methodology was gained. 
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8 PROPOSE MITIGATION TECHNIQUES 

Conventional cement systems are at times unable to maintain an effective seal under cyclic stressing conditions 

in the changing environment of the wellbore. These stresses are from thermal changes, and pressure changes 

such as stimulation activities like fracturing the wellbore. However, the industry has improved the cement 

systems that are used in wells.  

 Computer simulations and models can help in the cementing design process for these challenges. It was 

found that many operators are including some type of computer simulations. The use of FEA programs to 

gain insight to better determine how the cements and mechanical barriers are behaving will help improve the 

cement systems and have the potential to provide information that can improve the software currently being 

used. 

 Cement to casing bond is dependent on numerous mechanical properties, not just compressive strength. 

While one cement system may not be the best selection for all situations it was observed that the cements 

that exhibited more ductile behavior performed better in the lab and in the FEA simulations. These mixes 

generally had a lower Young’s Modulus coupled with higher compression and tensile strengths. 

 Excellent cement job execution is also critical to create a good bond. Mud removal, density control and other 

aspects of cement placement are important in creating a durable bond. The consequences of a poor cementing 

job are difficult to quantify. A better understanding of the effects of poor cementing on the durability of the 

bond can be gained by using FEA similar to the simulations performed in the lab in this project. The FEA 

could be used to perform sensitivity studies to investigate the wellbore response with reduced bond strengths. 

 Quality control of the cement blending and mixing should be monitored to ensure that the strengths placed 

in the wellbore meet or exceed the intended design. 

8.1 Cement barrier failure modes 

Stresses induced on typical deep-water wells by stimulation operations result from increased casing pressure 

and thermal shock/cycling of the casing by fracturing fluids. The magnitudes of these stresses are not generally 

sufficient to be the primary cause of damage to the casings. However, the stresses can be sufficient to cause 

failure of the cement or to destroy the bond of cement to casing or cement to formation. This failure of the 

cement to casing bond can potentially increase the loading of the casing overstressing it and cause a failure. 

Potential failure modes of cement from thermal shock during the combination of production-shut in cycles and 

stimulation can be attributed to tensile stress, compressive stress, and shear stress. The casing-cement-formation 

system integrity depends on mechanical properties of the cement such as Young’s Modulus, Poisson’s Ratio, 

and tensile strength. Cement failure in tension during stimulation is considered very common due to the 
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intrinsically low tensile strength of most Portland cement systems. This can be amplified if the low tensile 

strength system is has a higher Young’s Modulus. 

Additionally, the quality of cement placement and control of unwanted fluid migration in the cemented annulus 

after cement placement dictate the initial condition of the system and affect the potential for stress-induced seal 

failure. Finally, since Portland cement mechanical properties are governed by extent of chemical hydration 

occurring in the cement, where this hydration rate depends on time, temperature and cement design, the 

mechanical properties of the cement component must be measured after curing for appropriate times at 

simulated down-hole conditions to accurately assess performance. 

In addition to time dependence, mechanical performance of Portland cement can degrade under cyclic stress 

that is far below failure stress for the material. This degradation is due to the porous nature of set Portland 

cement and localized failure of the pore walls that can result from stresses in the elastic region. Thus, stresses 

lower than failure strength of cement can cause plastic strains. Stress repetition from thermal shock/cycling can 

result in additional plastic strain thus creating channels that allow flow at lower-stresses. 

In general, failure of the casing-cement-formation system as a result of thermal shock-induced stress is complex 

and is not accurately described by solely one or two cement mechanical property values. Primary failure points 

are within the cemented annulus. Failure is governed by cement composition, quality of cement placement, 

extent of hydration as governed by time interval between cement placement and stimulation treatment, and 

stimulation treatment temperatures and pressures. 

8.2 Mechanical barrier failure modes 

In general, a failure to a casing/tubular in the wellbore would occur after a failure or significant damage occurred 

within the cement annulus. While the design of the tubulars typically does not consider thermal shock explicitly, 

it is accounted for in the thermal loading applied. If a failure to a tubular is the primary cause of failure in the 

wellbore, the most likely cause will be due to a failed connection. This type of failure is not typically caused by 

thermal shock alone, but rather an additional factor such as: 

 Improper design or exposure to loads exceeding rated capacity 

 Failure to comply with make-up requirements 

 Failure to meet manufacturing tolerances 

 Damage during storage and handling 

 Damage during production operations  

-  e.g., corrosion and wear 
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The most common failure modes of the tubulars would be characterized as: 

 Ballooning 

 Collapse 

 Connection Failure 

Existing design tools are considered adequate to design tubular barriers for thermal shock, see Section 4.2.  

Mitigating against the effects of temperature variation in the design of the tubulars depends upon the failure 

mode but design solutions are likely to be available provided the temperature loading is accounted for in the 

first instance. 

Mechanical seal failure could be caused by high temperatures but provided the design basis for the seal 

components account for the temperatures and the temperature range the seals will be exposed to then the seal 

designs should be able to mitigate against the risk of barrier failure. 

In the case of the HPHT Deepwater wells being considered in this project, thermal shock caused either by 

shutting in a producing well or by stimulating a well should not pose a particularly onerous design constraint 

for mechanical seals at or near the mudline.  Seals near the mudline, for example in the well head, are likely to 

benefit from the temperature being higher in the bore than in the environment, provided the seal materials are 

rated for the highest temperatures they will be exposed to.  The temperature gradient from bore temperature to 

environment should assist sealing, as the inside will want to expand rather than contract assisting rather than 

compromising sealing. For seals deeper in the well, for example the production packer, the opposite is true and 

cooling of the inner string, for example during stimulation, would result in a less favourable temperature 

gradient.  But provided the temperature conditions surrounding the packer are accounted for in the packer basis 

of design, the risk of packer failure can be mitigated through design. 



 

 

  

Title: Final Report 

Client: BSEE 

Project: Thermal Shock Technology / E16PC00010 
 

 

 

  

 Document ID Document Owner Page Template ID / Revision No. 

TM-PM-17  Alistair Gill Page 113 of 127 TM-PM-17 (01) 

 

9 GUIDELINES AND BARRIER RISK RANKING 

The work performed in this study has highlighted that thermal shock can damage the cement barriers throughout 

the well bore.  The magnitude of the damage to cement is governed by the amplitude of the thermal shock and 

design of the cement. A significant finding of the simulation work performed is the importance of designing 

cement sealants for durability up and down the well. Intervention or remediation can induce sufficient thermal 

stresses to induce cement failure in well locations not usually considered high risk (mud line or mid well). While 

induced stresses may not be as high as those deeper downhole, typical mechanical properties of the cement 

design for these locations may be much lower for those seemingly lower-risk applications. If the cements 

designed for these regions are not subjected to extra design evaluation the risk of seal failure increases. 

The risk of cement barrier damage and hence barrier failure is also dominated by stimulation conditions rather 

than the production/shut-in cycles as the amplitude of the thermal shock is greatest in these circumstances. 

Provided appropriate consideration is given to thermal shock in the cement design, the risk of barrier failure can 

be mitigated.  It should be noted that this project considered a maximum bottom hole temperature of 350˚F.  As 

oil and gas exploration goes even deeper and hotter, then as bottom hole temperatures exceed 350˚F the risked 

posed by thermal shock will increase. 

While the term thermal shock is not prevalent in most of the regulations surrounding the construction of a well, 

CFRs, [28,29,30], do capture the need to address the well design conditions throughout the life of the well and 

for the cement design to be certified by a licensed professional engineer that is it fit for purpose, [29].  

CFR 250.415 makes reference to API RP 65 Part 2, [31], which does acknowledge that the mechanical 

parameters of the cement are critical to the integrity of the cement over the life of the well.  The API also 

acknowledges that cements with high tensile strength and low Young’s modulus tend to resist damage more 

effectively.  This is supported by the findings of this study as this combination performed the best.  CFR 250.415 

further requires a written description of how the well designer has evaluated the best practices included in API 

RP 65 Part 2. Therefore there does not appear to be a need to generate a raft of new guidelines concerning well 

design to accommodate thermal shock, however, temperature variations within the well lifetime and how they 

will be accommodated by the cement design should be given greater scrutiny to ensure the intent of the existing 

regulations is met. 

From the work performed the impact of thermal shock on the cement system appear to be dominated by the 

amplitude of the temperature change experienced by the well, rather than the rate of change of temperature.  

Design guidelines and recommended practices for HPHT well design do emphasise the need to consider the 

well conditions the barrier system will be exposed to over the life of the well, even if the specific term thermal 

shock is not used regularly. 

https://www.law.cornell.edu/definitions/index.php?width=840&height=800&iframe=true&def_id=729315ffd21e60cbe699df1aae27ce70&term_occur=4&term_src=Title:30:Chapter:II:Subchapter:B:Part:250:Subpart:D:Subjgrp:82:250.415
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For mechanical barriers, both the amplitude and the rate of change of temperature could be a more important 

factor.  If there is a significant temperature gradient across the barrier and that gradient changes with operating 

conditions, the sealing effectiveness could be impacted, albeit perhaps only temporarily. Therefore as well as 

taking into account the temperature amplitude the differential temperature across the barrier and how that 

changes with time should be accounted for in the design of the barrier. Under normal production-shut-in cycles 

the timescales of temperature change should limit this effect but the impact may be greater during stimulation 

when a sudden cooling of the well bore is much more pronounced.  However good design practise and a proper 

understanding of the loads those barriers are exposed to should be adequate to mitigate the risk of barrier failure. 

The mechanical barriers deeper in the well may be more susceptible than at the mudline. At the wellhead the 

environment is always colder than the bore, even during stimulation, and so the temperature gradient in the well 

cross-section should act in favour of the seal.  The risk of this type of failure is consider low since it can be 

mitigated through design, provided temperature is correctly address in the design basis of the barrier elements. 

Tubulars are undoubtedly affected by the temperature changes resulting from thermal shock but as with 

mechanical seals the design tools currently available should be sufficient to allow barriers to be designed to 

meet the temperature changes over the life of the well provided temperatures and temperature changes over the 

well life and their impact on the cement sheaths are adequately addressed at the design stage.  It is also important 

to note that some design tools widely used for that purpose assume a competent cement sheath exists at all times.  

The integrity of the tubular or other aspects of the well design could be compromised if the cement fails.  This 

emphasises the importance of getting the cement design correct.  Furthermore, prudent engineering design 

should examine the impact of a degraded cement sheath on the tubular system.   

In attempting to rank the risk to the cement barriers it would be convenient to simply use the magnitude of 

thermal shock as the governing metric.  However an important conclusion of this study is that, while clearly the 

highest thermal shock occurs deeper in the well during stimulation, the damage to the barrier, if poorly designed, 

can extend across a significant length of the well and the vulnerability of the cement barrier to temperature 

change is dependent upon the design of the cement.  Lower modulus high tensile strength cements tend to 

perform better in response to large changes of temperature but it is also apparent that one cement design that 

does well in one circumstance may not perform as well in another and simple designing for the maximum 

compressive strength may not be sufficient to produce a cement barrier that will last the lifetime of the well.  

Use of appropriate analysis, such as described in this study, would help ensure the cement is fit for purpose 

regardless of its location in the well. 
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Overall risk ranking for the barriers within a well is primarily a task that should be carried out on a well by well 

basis taking the overall well integrity into account.  While it may be more likely that a cement barrier is damaged 

during the operating life of the well, leading to barrier failure if the damage is extensive enough, the impact of 

that failure would be governed by the overall barrier philosophy of the well design.  A risk assessment of the 

well’s integrity should be carried out and the susceptibility of the cement designs to temperature change 

throughout the entire well should be included as part of that risk assessment.  This study recommends that 

approach rather than attempting to produce a generic risk ranking for barriers in a well.  
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10 ACADEMIC SCRUTINY 

University of Texas at Austin has been added to the team to provide independent scrutiny of the FE and testing 

activities, Task 4 and 5, as well as providing input during Task 6 which will look at mitigating the effects of 

thermal shock. 

Dr Richard Schultz was approached by the WWC project team to engage with them on this project as an 

Academic Partner. This engagement draws upon Dr Schulz’s work in reservoir geomechanics and subsurface 

asset integrity as Senior Research Scientist with the Center for Petroleum and Geosystems Engineering at The 

University of Texas at Austin (UT), and industry-funded research programs at UT including the Fracture 

Research and Application (FRAC) Consortium. The Petroleum and Geosystems Engineering Department’s 

undergraduate and graduate degree programs were consistently ranked as #1 in the nation (again through 2018) 

by U.S. News and World Report; the Center is the research arm of the Department. While at UT Dr Schulz was 

also an instructor in subsurface integrity with TopCorp, a multi-university consortium that provided technical 

training to state oil and gas regulators; prior to that he was Principal Geomechanicist and a key member of the 

company-wide subsurface containment assurance team at ConocoPhillips. 

Dr Schulz’s role in this project is to support and assist the Wild Wells team in three main tasks described above, 

from a partnering and advisory role; the intention is not to duplicate efforts but to apply his academic perspective 

to supplement the execution and interpretation of the technical work of these tasks. 

Several meetings between U of T and WWC and CSI have taken place and U of T has reviewed the work 

performed by the WWC team. 
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APPENDIX A– CEMENT MATERIAL CHARACTERISTICS 
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APPENDIX B – TASK 2 DEFINITION 

Definitions, Assumptions and Search Parameters 

The following will be applied to help focus Task 2 and provide some boundary conditions/limits for search 

parameters. 

Thermal Shock Definition: 

 Wells with a bottom hole temperature of 350°F  or above combined with a minimum ambient temperature 

as low as 40°F . 

 Thermal shock could be initiated by shutting in a producing well and allowing it to cool to ambient or by 

stimulating a well, although these thermal shocks are less severe than stimulation and damage mainly caused 

by the cyclical nature. 

 Thermal shock not only depends on the temperature range but also the rate at which temperature changes.  

The rate of cooling of the well would depend on the operations considered, e.g. natural cooling post shut-in 

or cooling during well stimulation for example.   

 While the expectation is that further refinement of the definition of thermal shock may be made in Task 3, 

the public domain search effort for task 2 will use the above definition to determine if research has been 

done into well thermal shock caused either by shut-in or stimulation. 

Initial Well Configuration: 

 Wells in the Lower Tertiary
2
 associated with Deepwater operations will be used to define the target operating 

conditions for the search parameters. Task 2 will define and use a representative well configuration to assist 

in the search but should not rule out any other information the search uncovers.  

 It was acknowledged at the project kick-off meeting that BSEE’s focus is on OCS Gulf of Mexico but that 

relevant knowledge from other regions, if readily uncovered by the public domain search, would be 

considered.
3
 

 Sensitivities to well parameters such as true vertical depth, measured depth, casing schedule, deviation, top 

of cement and hole size do not need to be explored in Task 2.  Task 2 will catalogue all of the variables that 

could have some impact on the thermal shock response of the well and the impact of these will then be 

explored in Task 4.  

                                            

 

 

2 Wells in the Cascade and Chinook fields are considered typical of the target wells 
2 This could include Arctic conditions for example, which could also prove to be worst-case? 



 

 

  

Title: Final Report 

Client: BSEE 

Project: Thermal Shock Technology / E16PC00010 
 

 

 

  

 Document ID Document Owner Page Template ID / Revision No. 

TM-PM-17  Alistair Gill Page 127 of 127 TM-PM-17 (01) 

 

 Task 2 will catalogue all of the variables that could have some impact on the thermal shock response of the 

well and the impact of these will then be explored in Task 4, however;  

 Task 2 excludes attempts and efforts by research team members to conduct a sensitivity analysis on the 

relative impact of the variables, and 

 Task 2 includes acquisition of any previously conducted sensitivity studies or related research, if any exists.  

Materials: 

 It is acknowledged that there are multiple variants of all of the primary well materials with steel, cement and 

elastomers each having subtly different mechanical and thermal properties that may have some bearing on 

thermal shock response.  Indeed a range of steel grades will likely be used through a typical casing program 

and these may also have slight differences in thermal properties.  However, Task 2 should not attempt to use 

all possible permutations of the materials as parameters for public domain information searches but rather 

identify whether typical well construction materials have been the subject of research into thermal shock as 

defined above.  The following boundary definitions apply: 

- To be considered, steel used in all casing strings that extend to the mudline. (Liners re excluded unless 

tied-back to the mudline.); 

- To be considered, steels (and any elastomers) in the wellhead and below, likely to be 4-6 different alloys 

that exhibit variations in hardness, brittleness an thermal-induced properties 

- The tree does not need to be considered within the scope of this project 

 


